Xiangbin Ruan, Kaining Hu, Yalan Yang, Runwei Yang, Elizabeth Tseng, Bowei Kang, Aileen Kauffman, Rong Zhong, Xiaochang Zhang
{"title":"在发育中的新皮层中,Rbfox1/2/3对转录调节因子和Ptbp1进行细胞类型特异性剪接。","authors":"Xiangbin Ruan, Kaining Hu, Yalan Yang, Runwei Yang, Elizabeth Tseng, Bowei Kang, Aileen Kauffman, Rong Zhong, Xiaochang Zhang","doi":"10.1523/JNEUROSCI.0822-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>How master splicing regulators cross talk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched alternative splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as <i>Meis2</i> and <i>Tead1</i> Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in <i>Ptbp1</i> Simultaneous ablation of <i>Rbfox1/2/3</i> in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of <i>Meis2</i> promotes <i>Tgfb3</i> transcription, while the <i>Meis2</i> neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. (The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.).</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-Type-Specific Splicing of Transcription Regulators and <i>Ptbp1</i> by <i>Rbfox1/2/3</i> in the Developing Neocortex.\",\"authors\":\"Xiangbin Ruan, Kaining Hu, Yalan Yang, Runwei Yang, Elizabeth Tseng, Bowei Kang, Aileen Kauffman, Rong Zhong, Xiaochang Zhang\",\"doi\":\"10.1523/JNEUROSCI.0822-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How master splicing regulators cross talk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched alternative splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as <i>Meis2</i> and <i>Tead1</i> Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in <i>Ptbp1</i> Simultaneous ablation of <i>Rbfox1/2/3</i> in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of <i>Meis2</i> promotes <i>Tgfb3</i> transcription, while the <i>Meis2</i> neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. (The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.).</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0822-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0822-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Cell-Type-Specific Splicing of Transcription Regulators and Ptbp1 by Rbfox1/2/3 in the Developing Neocortex.
How master splicing regulators cross talk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched alternative splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as Meis2 and Tead1 Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in Ptbp1 Simultaneous ablation of Rbfox1/2/3 in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of Meis2 promotes Tgfb3 transcription, while the Meis2 neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. (The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.).
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles