Isaac Cann, Yanfen Cheng, Manal A B Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I Mackie
{"title":"以瘤胃为目标挖掘用于生物能源生产的酶。","authors":"Isaac Cann, Yanfen Cheng, Manal A B Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I Mackie","doi":"10.1146/annurev-animal-021022-030040","DOIUrl":null,"url":null,"abstract":"<p><p>Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rumen-Targeted Mining of Enzymes for Bioenergy Production.\",\"authors\":\"Isaac Cann, Yanfen Cheng, Manal A B Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I Mackie\",\"doi\":\"10.1146/annurev-animal-021022-030040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.</p>\",\"PeriodicalId\":48953,\"journal\":{\"name\":\"Annual Review of Animal Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Animal Biosciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-animal-021022-030040\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-021022-030040","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Rumen-Targeted Mining of Enzymes for Bioenergy Production.
Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.
期刊介绍:
The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.