{"title":"不同加载方案对 180 度变向表現和运动学的急性影响。","authors":"Roland van den Tillaar, Aaron Uthoff","doi":"10.1080/14763141.2024.2427692","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the acute effects of different loading protocols on 180° change of direction (COD) performance in eleven male handball players. Participants performed a 10-0-5 COD test under seven conditions: without an external load, and with 3, 6, and 9 kg loads applied under two modes-assisted into the COD and resisted out of it and resisted into the COD and assisted out of it. While total COD time was not affected (<i>p</i> = 0.098; η<sup>2</sup> = 0.16), significant phase effects were observed (<i>p</i> < 0.001; η<sup>2</sup> ≥ 0.55). Loading protocols significantly influenced velocity, acceleration, and their distances from COD (<i>p</i> < 0.001; η<sup>2</sup> ≥ 0.37). Significant phase effects were observed for all step kinematic variables (<i>p</i> ≤ 0.037; η<sup>2</sup> ≥ 0.67), except contact time, and significant interaction (phase*condition) effects for all variables (<i>p</i> ≤ 0.004; η<sup>2</sup> ≥ 0.08), except for step frequency. Assisted-resisted protocols increased deceleration demands through higher COD entry velocities, displaying fewer but longer steps in the acceleration phase and greater steps taken during the deceleration phase. Resisted-assisted protocols decreased deceleration demands due to lower COD entry velocities, displaying shorter, but more steps taken in the acceleration phase, and fewer steps taken in the deceleration phase. These findings suggest that assisted-resisted and resisted-assisted loading protocols can be used to selectively overload specific phases of COD performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute effects of different loading protocols upon performance and kinematics of 180 degrees change of direction.\",\"authors\":\"Roland van den Tillaar, Aaron Uthoff\",\"doi\":\"10.1080/14763141.2024.2427692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined the acute effects of different loading protocols on 180° change of direction (COD) performance in eleven male handball players. Participants performed a 10-0-5 COD test under seven conditions: without an external load, and with 3, 6, and 9 kg loads applied under two modes-assisted into the COD and resisted out of it and resisted into the COD and assisted out of it. While total COD time was not affected (<i>p</i> = 0.098; η<sup>2</sup> = 0.16), significant phase effects were observed (<i>p</i> < 0.001; η<sup>2</sup> ≥ 0.55). Loading protocols significantly influenced velocity, acceleration, and their distances from COD (<i>p</i> < 0.001; η<sup>2</sup> ≥ 0.37). Significant phase effects were observed for all step kinematic variables (<i>p</i> ≤ 0.037; η<sup>2</sup> ≥ 0.67), except contact time, and significant interaction (phase*condition) effects for all variables (<i>p</i> ≤ 0.004; η<sup>2</sup> ≥ 0.08), except for step frequency. Assisted-resisted protocols increased deceleration demands through higher COD entry velocities, displaying fewer but longer steps in the acceleration phase and greater steps taken during the deceleration phase. Resisted-assisted protocols decreased deceleration demands due to lower COD entry velocities, displaying shorter, but more steps taken in the acceleration phase, and fewer steps taken in the deceleration phase. These findings suggest that assisted-resisted and resisted-assisted loading protocols can be used to selectively overload specific phases of COD performance.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2427692\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2427692","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Acute effects of different loading protocols upon performance and kinematics of 180 degrees change of direction.
This study examined the acute effects of different loading protocols on 180° change of direction (COD) performance in eleven male handball players. Participants performed a 10-0-5 COD test under seven conditions: without an external load, and with 3, 6, and 9 kg loads applied under two modes-assisted into the COD and resisted out of it and resisted into the COD and assisted out of it. While total COD time was not affected (p = 0.098; η2 = 0.16), significant phase effects were observed (p < 0.001; η2 ≥ 0.55). Loading protocols significantly influenced velocity, acceleration, and their distances from COD (p < 0.001; η2 ≥ 0.37). Significant phase effects were observed for all step kinematic variables (p ≤ 0.037; η2 ≥ 0.67), except contact time, and significant interaction (phase*condition) effects for all variables (p ≤ 0.004; η2 ≥ 0.08), except for step frequency. Assisted-resisted protocols increased deceleration demands through higher COD entry velocities, displaying fewer but longer steps in the acceleration phase and greater steps taken during the deceleration phase. Resisted-assisted protocols decreased deceleration demands due to lower COD entry velocities, displaying shorter, but more steps taken in the acceleration phase, and fewer steps taken in the deceleration phase. These findings suggest that assisted-resisted and resisted-assisted loading protocols can be used to selectively overload specific phases of COD performance.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.