网络分析:心理健康研究概述。

IF 2.4 3区 医学 Q2 PSYCHIATRY
Giovanni Briganti, Marco Scutari, Sacha Epskamp, Denny Borsboom, Ria H. A. Hoekstra, Hudson Fernandes Golino, Alexander P. Christensen, Yannick Morvan, Omid V. Ebrahimi, Giulio Costantini, Alexandre Heeren, Jill de Ron, Laura F. Bringmann, Karoline Huth, Jonas M. B. Haslbeck, Adela-Maria Isvoranu, Maarten Marsman, Tessa Blanken, Allison Gilbert, Teague Rhine Henry, Eiko I. Fried, Richard J. McNally
{"title":"网络分析:心理健康研究概述。","authors":"Giovanni Briganti,&nbsp;Marco Scutari,&nbsp;Sacha Epskamp,&nbsp;Denny Borsboom,&nbsp;Ria H. A. Hoekstra,&nbsp;Hudson Fernandes Golino,&nbsp;Alexander P. Christensen,&nbsp;Yannick Morvan,&nbsp;Omid V. Ebrahimi,&nbsp;Giulio Costantini,&nbsp;Alexandre Heeren,&nbsp;Jill de Ron,&nbsp;Laura F. Bringmann,&nbsp;Karoline Huth,&nbsp;Jonas M. B. Haslbeck,&nbsp;Adela-Maria Isvoranu,&nbsp;Maarten Marsman,&nbsp;Tessa Blanken,&nbsp;Allison Gilbert,&nbsp;Teague Rhine Henry,&nbsp;Eiko I. Fried,&nbsp;Richard J. McNally","doi":"10.1002/mpr.2034","DOIUrl":null,"url":null,"abstract":"<p>Network approaches to psychopathology have become increasingly common in mental health research, with many theoretical and methodological developments quickly gaining traction. This article illustrates contemporary practices in applying network analytical tools, bridging the gap between network concepts and their empirical applications. We explain how we can use graphs to construct networks representing complex associations among observable psychological variables. We then discuss key network models, including dynamic networks, time-varying networks, network models derived from panel data, network intervention analysis, latent networks, and moderated models. In addition, we discuss Bayesian networks and their role in causal inference with a focus on cross-sectional data. After presenting the different methods, we discuss how network models and psychopathology theories can meaningfully inform each other. We conclude with a discussion that summarizes the insights each technique can provide in mental health research.</p>","PeriodicalId":50310,"journal":{"name":"International Journal of Methods in Psychiatric Research","volume":"33 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mpr.2034","citationCount":"0","resultStr":"{\"title\":\"Network analysis: An overview for mental health research\",\"authors\":\"Giovanni Briganti,&nbsp;Marco Scutari,&nbsp;Sacha Epskamp,&nbsp;Denny Borsboom,&nbsp;Ria H. A. Hoekstra,&nbsp;Hudson Fernandes Golino,&nbsp;Alexander P. Christensen,&nbsp;Yannick Morvan,&nbsp;Omid V. Ebrahimi,&nbsp;Giulio Costantini,&nbsp;Alexandre Heeren,&nbsp;Jill de Ron,&nbsp;Laura F. Bringmann,&nbsp;Karoline Huth,&nbsp;Jonas M. B. Haslbeck,&nbsp;Adela-Maria Isvoranu,&nbsp;Maarten Marsman,&nbsp;Tessa Blanken,&nbsp;Allison Gilbert,&nbsp;Teague Rhine Henry,&nbsp;Eiko I. Fried,&nbsp;Richard J. McNally\",\"doi\":\"10.1002/mpr.2034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network approaches to psychopathology have become increasingly common in mental health research, with many theoretical and methodological developments quickly gaining traction. This article illustrates contemporary practices in applying network analytical tools, bridging the gap between network concepts and their empirical applications. We explain how we can use graphs to construct networks representing complex associations among observable psychological variables. We then discuss key network models, including dynamic networks, time-varying networks, network models derived from panel data, network intervention analysis, latent networks, and moderated models. In addition, we discuss Bayesian networks and their role in causal inference with a focus on cross-sectional data. After presenting the different methods, we discuss how network models and psychopathology theories can meaningfully inform each other. We conclude with a discussion that summarizes the insights each technique can provide in mental health research.</p>\",\"PeriodicalId\":50310,\"journal\":{\"name\":\"International Journal of Methods in Psychiatric Research\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mpr.2034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Methods in Psychiatric Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mpr.2034\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Methods in Psychiatric Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mpr.2034","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

心理病理学的网络方法在心理健康研究中越来越常见,许多理论和方法的发展也迅速获得了认可。本文阐述了应用网络分析工具的当代实践,弥合了网络概念与其经验应用之间的差距。我们解释了如何使用图形来构建网络,以表示可观察到的心理变量之间的复杂关联。然后,我们讨论了主要的网络模型,包括动态网络、时变网络、面板数据衍生的网络模型、网络干预分析、潜在网络和调节模型。此外,我们还讨论了贝叶斯网络及其在因果推断中的作用,重点是横截面数据。在介绍了不同的方法之后,我们讨论了网络模型和心理病理学理论如何能够相互提供有意义的信息。最后,我们通过讨论总结了每种技术在心理健康研究中可以提供的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Network analysis: An overview for mental health research

Network analysis: An overview for mental health research

Network approaches to psychopathology have become increasingly common in mental health research, with many theoretical and methodological developments quickly gaining traction. This article illustrates contemporary practices in applying network analytical tools, bridging the gap between network concepts and their empirical applications. We explain how we can use graphs to construct networks representing complex associations among observable psychological variables. We then discuss key network models, including dynamic networks, time-varying networks, network models derived from panel data, network intervention analysis, latent networks, and moderated models. In addition, we discuss Bayesian networks and their role in causal inference with a focus on cross-sectional data. After presenting the different methods, we discuss how network models and psychopathology theories can meaningfully inform each other. We conclude with a discussion that summarizes the insights each technique can provide in mental health research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
6.50%
发文量
48
审稿时长
>12 weeks
期刊介绍: The International Journal of Methods in Psychiatric Research (MPR) publishes high-standard original research of a technical, methodological, experimental and clinical nature, contributing to the theory, methodology, practice and evaluation of mental and behavioural disorders. The journal targets in particular detailed methodological and design papers from major national and international multicentre studies. There is a close working relationship with the US National Institute of Mental Health, the World Health Organisation (WHO) Diagnostic Instruments Committees, as well as several other European and international organisations. MPR aims to publish rapidly articles of highest methodological quality in such areas as epidemiology, biostatistics, generics, psychopharmacology, psychology and the neurosciences. Articles informing about innovative and critical methodological, statistical and clinical issues, including nosology, can be submitted as regular papers and brief reports. Reviews are only occasionally accepted. MPR seeks to monitor, discuss, influence and improve the standards of mental health and behavioral neuroscience research by providing a platform for rapid publication of outstanding contributions. As a quarterly journal MPR is a major source of information and ideas and is an important medium for students, clinicians and researchers in psychiatry, clinical psychology, epidemiology and the allied disciplines in the mental health field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信