Shuang-Shuang Zhao, Qisheng Qian, Yao Wang, Songlin Qiao, Rui Li
{"title":"猪繁殖与呼吸综合征病毒通过伴侣介导的自噬作用降解 TANK 结合激酶 1,从而抑制 I 型干扰素的产生并促进病毒增殖。","authors":"Shuang-Shuang Zhao, Qisheng Qian, Yao Wang, Songlin Qiao, Rui Li","doi":"10.1186/s13567-024-01392-w","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine reproductive and respiratory syndrome virus (PRRSV) has led to significant economic losses in the global swine industry. Type I interferon (IFN-I) plays a crucial role in the host's resistance to PRRSV infection. Despite extensive research showing that PRRSV employs multiple strategies to antagonise IFN-I induction, the underlying mechanisms remain to be fully elucidated. In this study, we have discovered that PRRSV inhibits the production of IFN-I by degrading TANK-binding kinase 1 (TBK1) through chaperon-mediated autophagy (CMA). From a mechanistic standpoint, PRRSV nonstructural protein 2 (Nsp2) increases the interaction between the heat shock protein member 8 (HSPA8) and TBK1. This interaction leads to the translocation of TBK1 into lysosomes for degradation, mediated by lysosomal-associated membrane protein 2A (LAMP2A). As a result, the downstream activation of IFN regulatory factor 3 (IRF3) and the production of IFN-I are hindered. Together, these results reveal a new mechanism by which PRRSV suppresses host innate immunity and contribute to the development of new antiviral strategies against the virus.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"151"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Porcine reproductive and respiratory syndrome virus degrades TANK-binding kinase 1 via chaperon-mediated autophagy to suppress type I interferon production and facilitate viral proliferation.\",\"authors\":\"Shuang-Shuang Zhao, Qisheng Qian, Yao Wang, Songlin Qiao, Rui Li\",\"doi\":\"10.1186/s13567-024-01392-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porcine reproductive and respiratory syndrome virus (PRRSV) has led to significant economic losses in the global swine industry. Type I interferon (IFN-I) plays a crucial role in the host's resistance to PRRSV infection. Despite extensive research showing that PRRSV employs multiple strategies to antagonise IFN-I induction, the underlying mechanisms remain to be fully elucidated. In this study, we have discovered that PRRSV inhibits the production of IFN-I by degrading TANK-binding kinase 1 (TBK1) through chaperon-mediated autophagy (CMA). From a mechanistic standpoint, PRRSV nonstructural protein 2 (Nsp2) increases the interaction between the heat shock protein member 8 (HSPA8) and TBK1. This interaction leads to the translocation of TBK1 into lysosomes for degradation, mediated by lysosomal-associated membrane protein 2A (LAMP2A). As a result, the downstream activation of IFN regulatory factor 3 (IRF3) and the production of IFN-I are hindered. Together, these results reveal a new mechanism by which PRRSV suppresses host innate immunity and contribute to the development of new antiviral strategies against the virus.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"55 1\",\"pages\":\"151\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-024-01392-w\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01392-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Porcine reproductive and respiratory syndrome virus degrades TANK-binding kinase 1 via chaperon-mediated autophagy to suppress type I interferon production and facilitate viral proliferation.
Porcine reproductive and respiratory syndrome virus (PRRSV) has led to significant economic losses in the global swine industry. Type I interferon (IFN-I) plays a crucial role in the host's resistance to PRRSV infection. Despite extensive research showing that PRRSV employs multiple strategies to antagonise IFN-I induction, the underlying mechanisms remain to be fully elucidated. In this study, we have discovered that PRRSV inhibits the production of IFN-I by degrading TANK-binding kinase 1 (TBK1) through chaperon-mediated autophagy (CMA). From a mechanistic standpoint, PRRSV nonstructural protein 2 (Nsp2) increases the interaction between the heat shock protein member 8 (HSPA8) and TBK1. This interaction leads to the translocation of TBK1 into lysosomes for degradation, mediated by lysosomal-associated membrane protein 2A (LAMP2A). As a result, the downstream activation of IFN regulatory factor 3 (IRF3) and the production of IFN-I are hindered. Together, these results reveal a new mechanism by which PRRSV suppresses host innate immunity and contribute to the development of new antiviral strategies against the virus.
期刊介绍:
Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.