{"title":"光伏电池衍生的硅肥及其与硅酸盐溶解细菌 Bacillus aryahattai 对分蘖期水稻生长的综合影响。","authors":"Jia Wen, Yichen Zhou, Han Meng, Qing Yue","doi":"10.1016/j.wasman.2024.11.013","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread retirement of crystalline silicon solar cells in coming years poses a significant obstacle to sustainable development. Arable soils have experienced a gradual decline in available silicon levels due to intensive agricultural production. Therefore, it is feasible to repurpose recovered waste crystalline silicon cells below cell-reuse benchmark into agriculturally usable resources. This study investigates the impact of photovoltaic crystalline silicon-derived fertilizer (Si group), external silicate-dissolving bacteria (Bac group), and their combination (All group) on early rice nutrient uptake, growth development, and soil physical and chemical properties through a 45-day potting experiment. The combined addition of silicon fertilizer and bacteria significantly improved soil nitrification process (nitrate nitrogen NO<sub>3</sub>-N increased by 73.5%) and soil organic matter content by 16.2%. The increases in soil-available silicon (by 14.9%) and total potassium (by 19%) in the All and Si were significant. For rice growth, the addition of silicon fertilizer did not have a positive effect on dry matter accumulation and plant height possibly due to the Si threshold effect or K stress. However, the chlorophyll content of the Bac and All treatment groups was enhanced by 25% and 29%, respectively, suggesting the positive effect of bacteria on soil nitrogen utilization. The absorption of potassium by the plants was positively correlated with silicon, and the accumulation of silicon reduced the carbon content of the rice's aboveground parts by 7.3% to 9.0%. The study provides a feasible solution of recycling and reusing waste crystalline silicon in agricultural applications, and the results also have indicative significance for the sustainable rice production under non-stress environmental conditions.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic cell-derived silicon fertilizer and its combined effect with silicate-dissolving bacteria Bacillus aryahattai on rice growing during the tillering stage.\",\"authors\":\"Jia Wen, Yichen Zhou, Han Meng, Qing Yue\",\"doi\":\"10.1016/j.wasman.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread retirement of crystalline silicon solar cells in coming years poses a significant obstacle to sustainable development. Arable soils have experienced a gradual decline in available silicon levels due to intensive agricultural production. Therefore, it is feasible to repurpose recovered waste crystalline silicon cells below cell-reuse benchmark into agriculturally usable resources. This study investigates the impact of photovoltaic crystalline silicon-derived fertilizer (Si group), external silicate-dissolving bacteria (Bac group), and their combination (All group) on early rice nutrient uptake, growth development, and soil physical and chemical properties through a 45-day potting experiment. The combined addition of silicon fertilizer and bacteria significantly improved soil nitrification process (nitrate nitrogen NO<sub>3</sub>-N increased by 73.5%) and soil organic matter content by 16.2%. The increases in soil-available silicon (by 14.9%) and total potassium (by 19%) in the All and Si were significant. For rice growth, the addition of silicon fertilizer did not have a positive effect on dry matter accumulation and plant height possibly due to the Si threshold effect or K stress. However, the chlorophyll content of the Bac and All treatment groups was enhanced by 25% and 29%, respectively, suggesting the positive effect of bacteria on soil nitrogen utilization. The absorption of potassium by the plants was positively correlated with silicon, and the accumulation of silicon reduced the carbon content of the rice's aboveground parts by 7.3% to 9.0%. The study provides a feasible solution of recycling and reusing waste crystalline silicon in agricultural applications, and the results also have indicative significance for the sustainable rice production under non-stress environmental conditions.</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2024.11.013\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.11.013","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
晶体硅太阳能电池在未来几年的广泛退役对可持续发展构成了重大障碍。由于集约化农业生产,耕地土壤中的可用硅含量逐渐下降。因此,将回收的低于电池重复使用基准的废晶体硅电池重新利用为农业可用资源是可行的。本研究通过为期 45 天的盆栽实验,研究了光伏晶体硅衍生肥料(Si 组)、外部硅酸盐溶解细菌(Bac 组)以及它们的组合(All 组)对早稻养分吸收、生长发育和土壤理化性质的影响。硅肥和细菌的联合施用显著改善了土壤硝化过程(硝态氮 NO3-N 增加了 73.5%),土壤有机质含量增加了 16.2%。土壤中可利用的硅(增加 14.9%)和全钾(增加 19%)在 All 和 Si 中都有显著增加。在水稻生长方面,可能由于硅的阈值效应或钾胁迫,添加硅肥对干物质积累和株高没有积极影响。不过,Bac 和 All 处理组的叶绿素含量分别提高了 25% 和 29%,这表明细菌对土壤氮的利用有积极作用。植物对钾的吸收与硅呈正相关,硅的积累使水稻地上部分的碳含量降低了 7.3% 至 9.0%。该研究为废晶硅在农业应用中的回收和再利用提供了一个可行的解决方案,其结果对非应激环境条件下水稻的可持续生产也具有指导意义。
Photovoltaic cell-derived silicon fertilizer and its combined effect with silicate-dissolving bacteria Bacillus aryahattai on rice growing during the tillering stage.
The widespread retirement of crystalline silicon solar cells in coming years poses a significant obstacle to sustainable development. Arable soils have experienced a gradual decline in available silicon levels due to intensive agricultural production. Therefore, it is feasible to repurpose recovered waste crystalline silicon cells below cell-reuse benchmark into agriculturally usable resources. This study investigates the impact of photovoltaic crystalline silicon-derived fertilizer (Si group), external silicate-dissolving bacteria (Bac group), and their combination (All group) on early rice nutrient uptake, growth development, and soil physical and chemical properties through a 45-day potting experiment. The combined addition of silicon fertilizer and bacteria significantly improved soil nitrification process (nitrate nitrogen NO3-N increased by 73.5%) and soil organic matter content by 16.2%. The increases in soil-available silicon (by 14.9%) and total potassium (by 19%) in the All and Si were significant. For rice growth, the addition of silicon fertilizer did not have a positive effect on dry matter accumulation and plant height possibly due to the Si threshold effect or K stress. However, the chlorophyll content of the Bac and All treatment groups was enhanced by 25% and 29%, respectively, suggesting the positive effect of bacteria on soil nitrogen utilization. The absorption of potassium by the plants was positively correlated with silicon, and the accumulation of silicon reduced the carbon content of the rice's aboveground parts by 7.3% to 9.0%. The study provides a feasible solution of recycling and reusing waste crystalline silicon in agricultural applications, and the results also have indicative significance for the sustainable rice production under non-stress environmental conditions.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)