Yuan Huang, Yuanyuan Zhang, Xiaofeng Yang, Zhanglin Lin
{"title":"单步无柱高效蛋白质制备方法。","authors":"Yuan Huang, Yuanyuan Zhang, Xiaofeng Yang, Zhanglin Lin","doi":"10.1016/j.tibtech.2024.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance protein preparation approach in a single column-free step.\",\"authors\":\"Yuan Huang, Yuanyuan Zhang, Xiaofeng Yang, Zhanglin Lin\",\"doi\":\"10.1016/j.tibtech.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.10.008\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.10.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A high-performance protein preparation approach in a single column-free step.
Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).