Lin Wang , Nyame Mustapha Murtala , Keqi Hu , Yijing Chen , Manxin Chen , Haiting Sun , Yungang Liu
{"title":"预测多溴联苯醚(PBDEs)作为各种人类 CYP 酶潜在底物的可能性,并对 BDE-99 的代谢激活诱变性进行实验室测试。","authors":"Lin Wang , Nyame Mustapha Murtala , Keqi Hu , Yijing Chen , Manxin Chen , Haiting Sun , Yungang Liu","doi":"10.1016/j.tox.2024.153992","DOIUrl":null,"url":null,"abstract":"<div><div>Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants, of which BDE-47 could be activated by human cytochrome P450s (CYPs) for chromosome-damaging effects. However, the metabolic activation and mutagenicity of other PBDEs remain unknown. In this study, 14 representative PBDEs were analyzed by molecular docking as potential substrates for several human CYPs. The results showed negative free energies for each pair of binding, however, different CYPs demonstrated largely varied frequencies of binding conformations favoring a substrate potential: CYP2E1, 3A4, and 2B6 being suitable for all/most compounds. Using BDE-99 (5 ∼ 40 μM) as a model compound (exposing for 2 cell cycles), it did not induce micronucleus in a human hepatoma HepG2 cell line, however, positive result was observed in C3A cells (derived from HepG2 but with enhanced expression of CYPs). Pretreatment of HepG2 cells with each of bisphenol A (1 μM, inducer of CYPs) and CITCO (10 μM, inducer of CYP2B6) led to micronucleus formation by BDE-99, while the effect of BDE-99 in C3A cells was abolished by 1-aminobenzotriazole (60 μM, inhibitor of CYPs). In a V79-derived cell line genetically engineered for expressing human CYP2B6 BDE-99 induced micronucleus, while it was negative in V79-Mz and its derivatives expressing several other human CYPs. The micronuclei formed in HepG2 cells pretreated with BPA and CITCO were free of centromere protein B immunofluorescence staining. Finally, BDE-99 weakly induced PIG-A gene mutations in C3A, while negative in HepG2 cells. In conclusion, our study suggest that BDE-99 may be activated by human CYP2B6 for chromosome-breaking effects.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"509 ","pages":"Article 153992"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of polybrominated diphenyl ethers (PBDEs) as potential substrates of various human CYP enzymes and laboratory test of BDE-99 for its metabolism-activated mutagenicity\",\"authors\":\"Lin Wang , Nyame Mustapha Murtala , Keqi Hu , Yijing Chen , Manxin Chen , Haiting Sun , Yungang Liu\",\"doi\":\"10.1016/j.tox.2024.153992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants, of which BDE-47 could be activated by human cytochrome P450s (CYPs) for chromosome-damaging effects. However, the metabolic activation and mutagenicity of other PBDEs remain unknown. In this study, 14 representative PBDEs were analyzed by molecular docking as potential substrates for several human CYPs. The results showed negative free energies for each pair of binding, however, different CYPs demonstrated largely varied frequencies of binding conformations favoring a substrate potential: CYP2E1, 3A4, and 2B6 being suitable for all/most compounds. Using BDE-99 (5 ∼ 40 μM) as a model compound (exposing for 2 cell cycles), it did not induce micronucleus in a human hepatoma HepG2 cell line, however, positive result was observed in C3A cells (derived from HepG2 but with enhanced expression of CYPs). Pretreatment of HepG2 cells with each of bisphenol A (1 μM, inducer of CYPs) and CITCO (10 μM, inducer of CYP2B6) led to micronucleus formation by BDE-99, while the effect of BDE-99 in C3A cells was abolished by 1-aminobenzotriazole (60 μM, inhibitor of CYPs). In a V79-derived cell line genetically engineered for expressing human CYP2B6 BDE-99 induced micronucleus, while it was negative in V79-Mz and its derivatives expressing several other human CYPs. The micronuclei formed in HepG2 cells pretreated with BPA and CITCO were free of centromere protein B immunofluorescence staining. Finally, BDE-99 weakly induced PIG-A gene mutations in C3A, while negative in HepG2 cells. In conclusion, our study suggest that BDE-99 may be activated by human CYP2B6 for chromosome-breaking effects.</div></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"509 \",\"pages\":\"Article 153992\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24002737\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24002737","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Prediction of polybrominated diphenyl ethers (PBDEs) as potential substrates of various human CYP enzymes and laboratory test of BDE-99 for its metabolism-activated mutagenicity
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants, of which BDE-47 could be activated by human cytochrome P450s (CYPs) for chromosome-damaging effects. However, the metabolic activation and mutagenicity of other PBDEs remain unknown. In this study, 14 representative PBDEs were analyzed by molecular docking as potential substrates for several human CYPs. The results showed negative free energies for each pair of binding, however, different CYPs demonstrated largely varied frequencies of binding conformations favoring a substrate potential: CYP2E1, 3A4, and 2B6 being suitable for all/most compounds. Using BDE-99 (5 ∼ 40 μM) as a model compound (exposing for 2 cell cycles), it did not induce micronucleus in a human hepatoma HepG2 cell line, however, positive result was observed in C3A cells (derived from HepG2 but with enhanced expression of CYPs). Pretreatment of HepG2 cells with each of bisphenol A (1 μM, inducer of CYPs) and CITCO (10 μM, inducer of CYP2B6) led to micronucleus formation by BDE-99, while the effect of BDE-99 in C3A cells was abolished by 1-aminobenzotriazole (60 μM, inhibitor of CYPs). In a V79-derived cell line genetically engineered for expressing human CYP2B6 BDE-99 induced micronucleus, while it was negative in V79-Mz and its derivatives expressing several other human CYPs. The micronuclei formed in HepG2 cells pretreated with BPA and CITCO were free of centromere protein B immunofluorescence staining. Finally, BDE-99 weakly induced PIG-A gene mutations in C3A, while negative in HepG2 cells. In conclusion, our study suggest that BDE-99 may be activated by human CYP2B6 for chromosome-breaking effects.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.