Rachele Catalano, Myriam Giusy Tibaldi, Lucia Lombardi, Antonella Santone, Mario Cesarelli, Francesco Mercaldo
{"title":"MR_NET:通过可解释卷积神经网络从组织学图像中检测和定位乳腺癌的方法。","authors":"Rachele Catalano, Myriam Giusy Tibaldi, Lucia Lombardi, Antonella Santone, Mario Cesarelli, Francesco Mercaldo","doi":"10.3390/s24217022","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most prevalent cancer among women globally, making early and accurate detection essential for effective treatment and improved survival rates. This paper presents a method designed to detect and localize breast cancer using deep learning, specifically convolutional neural networks. The approach classifies histological images of breast tissue as either tumor-positive or tumor-negative. We utilize several deep learning models, including a custom-built CNN, EfficientNet, ResNet50, VGG-16, VGG-19, and MobileNet. Fine-tuning was also applied to VGG-16, VGG-19, and MobileNet to enhance performance. Additionally, we introduce a novel deep learning model called MR_Net, aimed at providing a more accurate network for breast cancer detection and localization, potentially assisting clinicians in making informed decisions. This model could also accelerate the diagnostic process, enabling early detection of the disease. Furthermore, we propose a method for explainable predictions by generating heatmaps that highlight the regions within tissue images that the model focuses on when predicting a label, revealing the detection of benign, atypical, and malignant tumors. We evaluate both the quantitative and qualitative performance of MR_Net and the other models, also presenting explainable results that allow visualization of the tissue areas identified by the model as relevant to the presence of breast cancer.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548292/pdf/","citationCount":"0","resultStr":"{\"title\":\"MR_NET: A Method for Breast Cancer Detection and Localization from Histological Images Through Explainable Convolutional Neural Networks.\",\"authors\":\"Rachele Catalano, Myriam Giusy Tibaldi, Lucia Lombardi, Antonella Santone, Mario Cesarelli, Francesco Mercaldo\",\"doi\":\"10.3390/s24217022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most prevalent cancer among women globally, making early and accurate detection essential for effective treatment and improved survival rates. This paper presents a method designed to detect and localize breast cancer using deep learning, specifically convolutional neural networks. The approach classifies histological images of breast tissue as either tumor-positive or tumor-negative. We utilize several deep learning models, including a custom-built CNN, EfficientNet, ResNet50, VGG-16, VGG-19, and MobileNet. Fine-tuning was also applied to VGG-16, VGG-19, and MobileNet to enhance performance. Additionally, we introduce a novel deep learning model called MR_Net, aimed at providing a more accurate network for breast cancer detection and localization, potentially assisting clinicians in making informed decisions. This model could also accelerate the diagnostic process, enabling early detection of the disease. Furthermore, we propose a method for explainable predictions by generating heatmaps that highlight the regions within tissue images that the model focuses on when predicting a label, revealing the detection of benign, atypical, and malignant tumors. We evaluate both the quantitative and qualitative performance of MR_Net and the other models, also presenting explainable results that allow visualization of the tissue areas identified by the model as relevant to the presence of breast cancer.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217022\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217022","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
MR_NET: A Method for Breast Cancer Detection and Localization from Histological Images Through Explainable Convolutional Neural Networks.
Breast cancer is the most prevalent cancer among women globally, making early and accurate detection essential for effective treatment and improved survival rates. This paper presents a method designed to detect and localize breast cancer using deep learning, specifically convolutional neural networks. The approach classifies histological images of breast tissue as either tumor-positive or tumor-negative. We utilize several deep learning models, including a custom-built CNN, EfficientNet, ResNet50, VGG-16, VGG-19, and MobileNet. Fine-tuning was also applied to VGG-16, VGG-19, and MobileNet to enhance performance. Additionally, we introduce a novel deep learning model called MR_Net, aimed at providing a more accurate network for breast cancer detection and localization, potentially assisting clinicians in making informed decisions. This model could also accelerate the diagnostic process, enabling early detection of the disease. Furthermore, we propose a method for explainable predictions by generating heatmaps that highlight the regions within tissue images that the model focuses on when predicting a label, revealing the detection of benign, atypical, and malignant tumors. We evaluate both the quantitative and qualitative performance of MR_Net and the other models, also presenting explainable results that allow visualization of the tissue areas identified by the model as relevant to the presence of breast cancer.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.