{"title":"基于人工智能的脑磁共振成像应用的边缘计算:实时分类和分割的关键评估","authors":"Khuhed Memon, Norashikin Yahya, Mohd Zuki Yusoff, Rabani Remli, Aida-Widure Mustapha Mohd Mustapha, Hilwati Hashim, Syed Saad Azhar Ali, Shahabuddin Siddiqui","doi":"10.3390/s24217091","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation.\",\"authors\":\"Khuhed Memon, Norashikin Yahya, Mohd Zuki Yusoff, Rabani Remli, Aida-Widure Mustapha Mohd Mustapha, Hilwati Hashim, Syed Saad Azhar Ali, Shahabuddin Siddiqui\",\"doi\":\"10.3390/s24217091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217091\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217091","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation.
Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.