基于人工智能的脑磁共振成像应用的边缘计算:实时分类和分割的关键评估

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-11-04 DOI:10.3390/s24217091
Khuhed Memon, Norashikin Yahya, Mohd Zuki Yusoff, Rabani Remli, Aida-Widure Mustapha Mohd Mustapha, Hilwati Hashim, Syed Saad Azhar Ali, Shahabuddin Siddiqui
{"title":"基于人工智能的脑磁共振成像应用的边缘计算:实时分类和分割的关键评估","authors":"Khuhed Memon, Norashikin Yahya, Mohd Zuki Yusoff, Rabani Remli, Aida-Widure Mustapha Mohd Mustapha, Hilwati Hashim, Syed Saad Azhar Ali, Shahabuddin Siddiqui","doi":"10.3390/s24217091","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation.\",\"authors\":\"Khuhed Memon, Norashikin Yahya, Mohd Zuki Yusoff, Rabani Remli, Aida-Widure Mustapha Mohd Mustapha, Hilwati Hashim, Syed Saad Azhar Ali, Shahabuddin Siddiqui\",\"doi\":\"10.3390/s24217091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217091\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217091","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

医学影像在医学诊断中起着举足轻重的作用,磁共振成像(MRI)、计算机断层扫描(CT)、正电子发射断层扫描(PET)和超声波扫描等技术被广泛用于协助放射科医生和医学专家得出具体诊断结果。鉴于计算机的存储和处理能力以及公开的大数据近期大幅提升,人工智能(AI)也开始为改善放射诊断做出贡献。在网络和计算资源有限的偏远地区,边缘计算设备和手持小工具可以作为处理医疗数据的有用工具。本研究评估了多个平台在实时部署诊断工具方面的能力。以往研究中开发的核磁共振成像分类和分割应用程序被用于测试不同硬件和软件配置的性能。使用英伟达™(NVIDIA®)图形处理器(GPU)工作站、Jetson Xavier NX、Raspberry Pi 4B 和安卓手机,并使用 MATLAB、Python 和 Android Studio 进行了成本效益分析。分类应用程序在 PC、Jetson Xavier NX 和 Raspberry Pi 上的平均计算时间分别为 1.2074 秒、3.7627 秒和 3.4747 秒。在低成本安卓手机上,使用基线模型的动态范围量化 TFLite 版本,观察到的时间为 0.1068 秒,准确率略有下降。对于分割应用程序,在使用 JPEG 输入时,时间分别为 1.8241 秒、5.2641 秒、6.2162 秒和 3.2023 秒。Jetson Xavier NX 和安卓手机因其小巧的体积、快速的推理时间和经济实惠的价格而成为最佳平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation.

Medical imaging plays a pivotal role in diagnostic medicine with technologies like Magnetic Resonance Imagining (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), and ultrasound scans being widely used to assist radiologists and medical experts in reaching concrete diagnosis. Given the recent massive uplift in the storage and processing capabilities of computers, and the publicly available big data, Artificial Intelligence (AI) has also started contributing to improving diagnostic radiology. Edge computing devices and handheld gadgets can serve as useful tools to process medical data in remote areas with limited network and computational resources. In this research, the capabilities of multiple platforms are evaluated for the real-time deployment of diagnostic tools. MRI classification and segmentation applications developed in previous studies are used for testing the performance using different hardware and software configurations. Cost-benefit analysis is carried out using a workstation with a NVIDIA Graphics Processing Unit (GPU), Jetson Xavier NX, Raspberry Pi 4B, and Android phone, using MATLAB, Python, and Android Studio. The mean computational times for the classification app on the PC, Jetson Xavier NX, and Raspberry Pi are 1.2074, 3.7627, and 3.4747 s, respectively. On the low-cost Android phone, this time is observed to be 0.1068 s using the Dynamic Range Quantized TFLite version of the baseline model, with slight degradation in accuracy. For the segmentation app, the times are 1.8241, 5.2641, 6.2162, and 3.2023 s, respectively, when using JPEG inputs. The Jetson Xavier NX and Android phone stand out as the best platforms due to their compact size, fast inference times, and affordability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信