利用深度学习诊断胰腺导管腺癌

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217005
Fulya Kavak, Sebnem Bora, Aylin Kantarci, Aybars Uğur, Sumru Cagaptay, Deniz Gokcay, Anıl Aysal, Burcin Pehlivanoglu, Ozgul Sagol
{"title":"利用深度学习诊断胰腺导管腺癌","authors":"Fulya Kavak, Sebnem Bora, Aylin Kantarci, Aybars Uğur, Sumru Cagaptay, Deniz Gokcay, Anıl Aysal, Burcin Pehlivanoglu, Ozgul Sagol","doi":"10.3390/s24217005","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in artificial intelligence (AI) research, particularly in image processing technologies, have shown promising applications across various domains, including health care. There is a significant effort to use AI for the early diagnosis and detection of diseases, offering cost-effective and timely solutions to enhance patient outcomes. This study introduces a deep learning network aimed at analyzing pathology images for the accurate diagnosis of pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). Utilizing a novel dataset comprised of cases diagnosed with PDAC and/or chronic pancreatitis, this study applies deep learning algorithms to assess the effectiveness and reliability of the diagnostic process. The dataset was enhanced through image duplication and the creation of a second dataset with varied dimensions, facilitating the training of advanced transfer learning models including InceptionV3, DenseNet, ResNet, VGG, EfficientNet, and a specially designed deep neural network. The study presents a convolutional neural network model, optimized for the rapid and accurate detection of pancreatic cancer, and conducts a comparative analysis with other models to select the most accurate algorithm for a decision support system. The results from Dataset 1 show that EfficientNetB0 achieved a high success rate of 92%. In Dataset 2, VGG16 was found to have high performance, with a success rate of 92%. On the other hand, ResNet50 achieved a remarkable success rate of 96% despite a moderate training time and showed high precision, recall, F1 score, and accuracy. These results provide valuable data to demonstrate and share the relevance of different deep learning models in pancreatic cancer diagnosis.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Pancreatic Ductal Adenocarcinoma Using Deep Learning.\",\"authors\":\"Fulya Kavak, Sebnem Bora, Aylin Kantarci, Aybars Uğur, Sumru Cagaptay, Deniz Gokcay, Anıl Aysal, Burcin Pehlivanoglu, Ozgul Sagol\",\"doi\":\"10.3390/s24217005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in artificial intelligence (AI) research, particularly in image processing technologies, have shown promising applications across various domains, including health care. There is a significant effort to use AI for the early diagnosis and detection of diseases, offering cost-effective and timely solutions to enhance patient outcomes. This study introduces a deep learning network aimed at analyzing pathology images for the accurate diagnosis of pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). Utilizing a novel dataset comprised of cases diagnosed with PDAC and/or chronic pancreatitis, this study applies deep learning algorithms to assess the effectiveness and reliability of the diagnostic process. The dataset was enhanced through image duplication and the creation of a second dataset with varied dimensions, facilitating the training of advanced transfer learning models including InceptionV3, DenseNet, ResNet, VGG, EfficientNet, and a specially designed deep neural network. The study presents a convolutional neural network model, optimized for the rapid and accurate detection of pancreatic cancer, and conducts a comparative analysis with other models to select the most accurate algorithm for a decision support system. The results from Dataset 1 show that EfficientNetB0 achieved a high success rate of 92%. In Dataset 2, VGG16 was found to have high performance, with a success rate of 92%. On the other hand, ResNet50 achieved a remarkable success rate of 96% despite a moderate training time and showed high precision, recall, F1 score, and accuracy. These results provide valuable data to demonstrate and share the relevance of different deep learning models in pancreatic cancer diagnosis.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217005\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217005","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)研究的最新进展,特别是在图像处理技术方面,已经在包括医疗保健在内的各个领域显示出广阔的应用前景。人们正努力将人工智能用于疾病的早期诊断和检测,为提高患者的治疗效果提供具有成本效益的及时解决方案。本研究介绍了一种深度学习网络,旨在分析病理图像以准确诊断胰腺癌,特别是胰腺导管腺癌(PDAC)。本研究利用由确诊为 PDAC 和/或慢性胰腺炎病例组成的新型数据集,应用深度学习算法来评估诊断过程的有效性和可靠性。该数据集通过图像复制和创建具有不同维度的第二个数据集得到了增强,从而促进了高级迁移学习模型的训练,包括 InceptionV3、DenseNet、ResNet、VGG、EfficientNet 和一个专门设计的深度神经网络。本研究提出了一个卷积神经网络模型,该模型经过优化,可快速、准确地检测胰腺癌,并与其他模型进行了比较分析,为决策支持系统选择了最准确的算法。数据集 1 的结果显示,EfficientNetB0 的成功率高达 92%。在数据集 2 中,VGG16 的性能很高,成功率达到 92%。另一方面,尽管训练时间适中,ResNet50 仍取得了 96% 的显著成功率,并显示出较高的精度、召回率、F1 分数和准确率。这些结果为展示和分享不同深度学习模型在胰腺癌诊断中的相关性提供了宝贵的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Pancreatic Ductal Adenocarcinoma Using Deep Learning.

Recent advances in artificial intelligence (AI) research, particularly in image processing technologies, have shown promising applications across various domains, including health care. There is a significant effort to use AI for the early diagnosis and detection of diseases, offering cost-effective and timely solutions to enhance patient outcomes. This study introduces a deep learning network aimed at analyzing pathology images for the accurate diagnosis of pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). Utilizing a novel dataset comprised of cases diagnosed with PDAC and/or chronic pancreatitis, this study applies deep learning algorithms to assess the effectiveness and reliability of the diagnostic process. The dataset was enhanced through image duplication and the creation of a second dataset with varied dimensions, facilitating the training of advanced transfer learning models including InceptionV3, DenseNet, ResNet, VGG, EfficientNet, and a specially designed deep neural network. The study presents a convolutional neural network model, optimized for the rapid and accurate detection of pancreatic cancer, and conducts a comparative analysis with other models to select the most accurate algorithm for a decision support system. The results from Dataset 1 show that EfficientNetB0 achieved a high success rate of 92%. In Dataset 2, VGG16 was found to have high performance, with a success rate of 92%. On the other hand, ResNet50 achieved a remarkable success rate of 96% despite a moderate training time and showed high precision, recall, F1 score, and accuracy. These results provide valuable data to demonstrate and share the relevance of different deep learning models in pancreatic cancer diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信