CartoMark:利用机器智能进行地图模式识别和地图内容检索的基准数据集。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiran Zhou, Yi Wen, Zhenfeng Shao, Wenwen Li, Kaiyuan Li, Honghao Li, Xiao Xie, Zhigang Yan
{"title":"CartoMark:利用机器智能进行地图模式识别和地图内容检索的基准数据集。","authors":"Xiran Zhou, Yi Wen, Zhenfeng Shao, Wenwen Li, Kaiyuan Li, Honghao Li, Xiao Xie, Zhigang Yan","doi":"10.1038/s41597-024-04057-7","DOIUrl":null,"url":null,"abstract":"<p><p>Maps are fundamental medium to visualize and represent the real word in a simple and philosophical way. The emergence of the big data tide has made a proportion of maps generated from multiple sources, significantly enriching the dimensions and perspectives for understanding the characteristics of the real world. However, a majority of these map datasets remain undiscovered, unacquired and ineffectively used, which arises from the lack of numerous well-labelled benchmark datasets, which are of significance to implement the deep learning techniques into identifying complicated map content. To address this issue, we develop a large-scale benchmark dataset involving well-labelled datasets to employ the state-of-the-art machine intelligence technologies for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate map feature detection, map pattern recognition and map content retrieval. We hope our efforts would provide well-labelled data resources for advancing the ability to recognize and discover valuable map content.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1205"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549302/pdf/","citationCount":"0","resultStr":"{\"title\":\"CartoMark: a benchmark dataset for map pattern recognition and map content retrieval with machine intelligence.\",\"authors\":\"Xiran Zhou, Yi Wen, Zhenfeng Shao, Wenwen Li, Kaiyuan Li, Honghao Li, Xiao Xie, Zhigang Yan\",\"doi\":\"10.1038/s41597-024-04057-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maps are fundamental medium to visualize and represent the real word in a simple and philosophical way. The emergence of the big data tide has made a proportion of maps generated from multiple sources, significantly enriching the dimensions and perspectives for understanding the characteristics of the real world. However, a majority of these map datasets remain undiscovered, unacquired and ineffectively used, which arises from the lack of numerous well-labelled benchmark datasets, which are of significance to implement the deep learning techniques into identifying complicated map content. To address this issue, we develop a large-scale benchmark dataset involving well-labelled datasets to employ the state-of-the-art machine intelligence technologies for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate map feature detection, map pattern recognition and map content retrieval. We hope our efforts would provide well-labelled data resources for advancing the ability to recognize and discover valuable map content.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1205\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04057-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04057-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地图是以简单而富有哲理的方式直观呈现现实世界的基本媒介。大数据浪潮的出现使得从多种来源生成的地图所占比例大幅增加,极大地丰富了人们了解现实世界特征的维度和视角。然而,这些地图数据集大部分仍未被发现、获取和有效利用,其原因在于缺乏大量标记良好的基准数据集,而这些数据集对于实施深度学习技术识别复杂的地图内容具有重要意义。为了解决这个问题,我们开发了一个大规模基准数据集,其中涉及标记良好的数据集,用于在地图文本注释识别、地图场景分类、地图超分辨率重建和地图风格转移等方面采用最先进的机器智能技术。此外,这些标记良好的数据集将有助于地图特征检测、地图模式识别和地图内容检索。我们希望我们的努力能为提高识别和发现有价值的地图内容的能力提供有良好标签的数据资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CartoMark: a benchmark dataset for map pattern recognition and map content retrieval with machine intelligence.

Maps are fundamental medium to visualize and represent the real word in a simple and philosophical way. The emergence of the big data tide has made a proportion of maps generated from multiple sources, significantly enriching the dimensions and perspectives for understanding the characteristics of the real world. However, a majority of these map datasets remain undiscovered, unacquired and ineffectively used, which arises from the lack of numerous well-labelled benchmark datasets, which are of significance to implement the deep learning techniques into identifying complicated map content. To address this issue, we develop a large-scale benchmark dataset involving well-labelled datasets to employ the state-of-the-art machine intelligence technologies for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate map feature detection, map pattern recognition and map content retrieval. We hope our efforts would provide well-labelled data resources for advancing the ability to recognize and discover valuable map content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信