{"title":"甲醛传感聚合物探针的最新进展:全面综述。","authors":"Subhadip Roy, Swagata Pan, Priyadarsi De","doi":"10.1080/14686996.2024.2423597","DOIUrl":null,"url":null,"abstract":"<p><p>Formaldehyde (FA) is a reactive toxic volatile organic compound (VOC), produced both exogenously from the environment and endogenously within most organisms, and poses significant health risks to humans at elevated concentrations. Consequently, the development of reliable and sensitive FA sensing technologies is crucial for environmental monitoring, industrial safety, and public health protection. This review will provide a concise overview of FA sensing methodologies, highlighting key principles, sensing mechanisms, and recent advancements. The main aim of this review article is to comprehensively discuss recent advancements in FA sensors utilizing small molecules, nanoparticles, organic materials, and polymers, along with their successful applications across various fields, with particular emphasis on <i>in situ</i> FA sensing using polymeric probes due to their advantages over small molecular probes. Additionally, it will discuss prospects for future design and research in this area. We anticipate that this article will aid in the development of next-generation polymeric FA sensing probed with improved physicochemical properties.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2423597"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559022/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent progress on polymeric probes for formaldehyde sensing: a comprehensive review.\",\"authors\":\"Subhadip Roy, Swagata Pan, Priyadarsi De\",\"doi\":\"10.1080/14686996.2024.2423597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Formaldehyde (FA) is a reactive toxic volatile organic compound (VOC), produced both exogenously from the environment and endogenously within most organisms, and poses significant health risks to humans at elevated concentrations. Consequently, the development of reliable and sensitive FA sensing technologies is crucial for environmental monitoring, industrial safety, and public health protection. This review will provide a concise overview of FA sensing methodologies, highlighting key principles, sensing mechanisms, and recent advancements. The main aim of this review article is to comprehensively discuss recent advancements in FA sensors utilizing small molecules, nanoparticles, organic materials, and polymers, along with their successful applications across various fields, with particular emphasis on <i>in situ</i> FA sensing using polymeric probes due to their advantages over small molecular probes. Additionally, it will discuss prospects for future design and research in this area. We anticipate that this article will aid in the development of next-generation polymeric FA sensing probed with improved physicochemical properties.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2423597\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2423597\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2423597","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
甲醛 (FA) 是一种反应性有毒挥发性有机化合物 (VOC),既可从环境中外源产生,也可在大多数生物体内内源产生,浓度升高时会对人体健康造成严重危害。因此,开发可靠、灵敏的 FA 传感技术对于环境监测、工业安全和公共健康保护至关重要。本综述将简要概述 FA 传感方法,重点介绍其关键原理、传感机制和最新进展。这篇综述文章的主要目的是全面讨论利用小分子、纳米粒子、有机材料和聚合物的 FA 传感器的最新进展及其在各个领域的成功应用,其中特别强调利用聚合物探针进行原位 FA 传感,因为与小分子探针相比,聚合物探针具有更多优势。此外,文章还将讨论该领域未来设计和研究的前景。我们希望这篇文章能有助于开发具有更好理化特性的下一代聚合物 FA 传感探针。
Recent progress on polymeric probes for formaldehyde sensing: a comprehensive review.
Formaldehyde (FA) is a reactive toxic volatile organic compound (VOC), produced both exogenously from the environment and endogenously within most organisms, and poses significant health risks to humans at elevated concentrations. Consequently, the development of reliable and sensitive FA sensing technologies is crucial for environmental monitoring, industrial safety, and public health protection. This review will provide a concise overview of FA sensing methodologies, highlighting key principles, sensing mechanisms, and recent advancements. The main aim of this review article is to comprehensively discuss recent advancements in FA sensors utilizing small molecules, nanoparticles, organic materials, and polymers, along with their successful applications across various fields, with particular emphasis on in situ FA sensing using polymeric probes due to their advantages over small molecular probes. Additionally, it will discuss prospects for future design and research in this area. We anticipate that this article will aid in the development of next-generation polymeric FA sensing probed with improved physicochemical properties.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.