利用基于深度学习的图像重构技术加速心脏磁共振成像(Cine Imaging)。

IF 3.8 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ann-Christin Klemenz, Linda Reichardt, Margarita Gorodezky, Mathias Manzke, Xucheng Zhu, Antonia Dalmer, Roberto Lorbeer, Cajetan I Lang, Marc-André Weber, Felix G Meinel
{"title":"利用基于深度学习的图像重构技术加速心脏磁共振成像(Cine Imaging)。","authors":"Ann-Christin Klemenz, Linda Reichardt, Margarita Gorodezky, Mathias Manzke, Xucheng Zhu, Antonia Dalmer, Roberto Lorbeer, Cajetan I Lang, Marc-André Weber, Felix G Meinel","doi":"10.1148/ryct.230419","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To assess the influence of deep learning (DL)-based image reconstruction on acquisition time, volumetric results, and image quality of cine sequences in cardiac MRI. Materials and Methods This prospective study (performed from January 2023 to March 2023) included 55 healthy volunteers who underwent a noncontrast cardiac MRI examination at 1.5 T. Short-axis stack DL cine sequences of the left ventricle (LV) were performed over one (1RR), three (3RR), and six cardiac (6RR) cycles and compared with a standard cine sequence (without DL, performed over 10-12 cardiac cycles) in regard to acquisition time, subjective image quality, edge sharpness, and volumetric results. Results Total acquisition time (median) for a short-axis stack was 47 seconds for the 1RR cine, 108 seconds for 3RR cine, 184 seconds for 6RR cine, and 227 seconds for the standard sequence. Volumetric results showed no difference for the conventional cine (median LV ejection fraction [EF] 63%), 6RR cine (median LVEF, 62%), and 3RR cine (median LVEF, 61%). The 1RR cine sequence significantly underestimated EF (57%) because of a different segmentation of the papillary muscles. Subjective image quality (<i>P</i> = .37) and edge sharpness (<i>P</i> = .06) of the three-heartbeat DL cine did not differ from the reference standard, while both metrics were lower for single-heartbeat DL cine and higher for six-heartbeat DL cine. Conclusion For DL-based cine sequences, acquisition over three cardiac cycles appears to be the optimal compromise, with no evidence of differences in image quality, edge sharpness, and volumetric results, but with a greater than 50% reduced acquisition time compared with the reference sequence. <b>Keywords:</b> MR Imaging, Cardiac, Heart, Technical Aspects, Cardiac MRI, Deep Learning, Clinical Imaging, Accelerated Imaging <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":21168,"journal":{"name":"Radiology. Cardiothoracic imaging","volume":"6 6","pages":"e230419"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Cardiac MRI with Deep Learning-based Image Reconstruction for Cine Imaging.\",\"authors\":\"Ann-Christin Klemenz, Linda Reichardt, Margarita Gorodezky, Mathias Manzke, Xucheng Zhu, Antonia Dalmer, Roberto Lorbeer, Cajetan I Lang, Marc-André Weber, Felix G Meinel\",\"doi\":\"10.1148/ryct.230419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To assess the influence of deep learning (DL)-based image reconstruction on acquisition time, volumetric results, and image quality of cine sequences in cardiac MRI. Materials and Methods This prospective study (performed from January 2023 to March 2023) included 55 healthy volunteers who underwent a noncontrast cardiac MRI examination at 1.5 T. Short-axis stack DL cine sequences of the left ventricle (LV) were performed over one (1RR), three (3RR), and six cardiac (6RR) cycles and compared with a standard cine sequence (without DL, performed over 10-12 cardiac cycles) in regard to acquisition time, subjective image quality, edge sharpness, and volumetric results. Results Total acquisition time (median) for a short-axis stack was 47 seconds for the 1RR cine, 108 seconds for 3RR cine, 184 seconds for 6RR cine, and 227 seconds for the standard sequence. Volumetric results showed no difference for the conventional cine (median LV ejection fraction [EF] 63%), 6RR cine (median LVEF, 62%), and 3RR cine (median LVEF, 61%). The 1RR cine sequence significantly underestimated EF (57%) because of a different segmentation of the papillary muscles. Subjective image quality (<i>P</i> = .37) and edge sharpness (<i>P</i> = .06) of the three-heartbeat DL cine did not differ from the reference standard, while both metrics were lower for single-heartbeat DL cine and higher for six-heartbeat DL cine. Conclusion For DL-based cine sequences, acquisition over three cardiac cycles appears to be the optimal compromise, with no evidence of differences in image quality, edge sharpness, and volumetric results, but with a greater than 50% reduced acquisition time compared with the reference sequence. <b>Keywords:</b> MR Imaging, Cardiac, Heart, Technical Aspects, Cardiac MRI, Deep Learning, Clinical Imaging, Accelerated Imaging <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>\",\"PeriodicalId\":21168,\"journal\":{\"name\":\"Radiology. Cardiothoracic imaging\",\"volume\":\"6 6\",\"pages\":\"e230419\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology. Cardiothoracic imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryct.230419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Cardiothoracic imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryct.230419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的 评估基于深度学习(DL)的图像重建对心脏 MRI 电影序列的采集时间、容积结果和图像质量的影响。这项前瞻性研究(于 2023 年 1 月至 2023 年 3 月进行)纳入了 55 名健康志愿者,他们在 1.5 T 下接受了非对比心脏磁共振成像检查。在一个(1RR)、三个(3RR)和六个心动周期(6RR)内对左心室(LV)进行了短轴堆叠 DL 电影序列,并在采集时间、主观图像质量、边缘锐利度和容积结果方面与标准电影序列(无 DL,在 10-12 个心动周期内进行)进行了比较。结果 1RR 电影短轴堆叠的总采集时间(中位数)为 47 秒,3RR 电影为 108 秒,6RR 电影为 184 秒,标准序列为 227 秒。容积结果显示,传统 cine(左心室射血分数 [EF] 中位值为 63%)、6RR cine(左心室射血分数中位值为 62%)和 3RR cine(左心室射血分数中位值为 61%)没有差异。由于乳头肌的分割不同,1RR cine序列明显低估了EF(57%)。三心搏动 DL cine 的主观图像质量(P = 0.37)和边缘锐利度(P = 0.06)与参考标准无差异,而单心搏动 DL cine 的这两项指标均较低,六心搏动 DL cine 则较高。结论 对于基于 DL 的电影序列,三个心动周期的采集似乎是最佳的折衷方案,没有证据表明在图像质量、边缘锐利度和容积结果方面存在差异,但与参考序列相比,采集时间减少了 50%以上。关键词磁共振成像,心脏,心脏,技术方面,心脏磁共振成像,深度学习,临床成像,加速成像 本文有补充材料。© RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Cardiac MRI with Deep Learning-based Image Reconstruction for Cine Imaging.

Purpose To assess the influence of deep learning (DL)-based image reconstruction on acquisition time, volumetric results, and image quality of cine sequences in cardiac MRI. Materials and Methods This prospective study (performed from January 2023 to March 2023) included 55 healthy volunteers who underwent a noncontrast cardiac MRI examination at 1.5 T. Short-axis stack DL cine sequences of the left ventricle (LV) were performed over one (1RR), three (3RR), and six cardiac (6RR) cycles and compared with a standard cine sequence (without DL, performed over 10-12 cardiac cycles) in regard to acquisition time, subjective image quality, edge sharpness, and volumetric results. Results Total acquisition time (median) for a short-axis stack was 47 seconds for the 1RR cine, 108 seconds for 3RR cine, 184 seconds for 6RR cine, and 227 seconds for the standard sequence. Volumetric results showed no difference for the conventional cine (median LV ejection fraction [EF] 63%), 6RR cine (median LVEF, 62%), and 3RR cine (median LVEF, 61%). The 1RR cine sequence significantly underestimated EF (57%) because of a different segmentation of the papillary muscles. Subjective image quality (P = .37) and edge sharpness (P = .06) of the three-heartbeat DL cine did not differ from the reference standard, while both metrics were lower for single-heartbeat DL cine and higher for six-heartbeat DL cine. Conclusion For DL-based cine sequences, acquisition over three cardiac cycles appears to be the optimal compromise, with no evidence of differences in image quality, edge sharpness, and volumetric results, but with a greater than 50% reduced acquisition time compared with the reference sequence. Keywords: MR Imaging, Cardiac, Heart, Technical Aspects, Cardiac MRI, Deep Learning, Clinical Imaging, Accelerated Imaging Supplemental material is available for this article. © RSNA, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
1.40%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信