Guocheng Liu, Ning Hu, Junjie Huang, Qiyong Tu, Fengxiang Xu
{"title":"基于熔融沉积模型的聚醚醚酮机械性能和动态热力学性能实验研究。","authors":"Guocheng Liu, Ning Hu, Junjie Huang, Qiyong Tu, Fengxiang Xu","doi":"10.3390/polym16213007","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, the mechanical and dynamic thermomechanical properties of PEEK based on FDM are experimentally investigated and evaluated comprehensively. The tensile failure mechanism of PEEK prepared by FDM and extrusion modeling (EM) was analyzed by fracture morphology observation. By conducting a differential scanning calorimetry (DSC) test, the crystallinity of PEEK prepared by FDM and EM was measured. The dynamic thermomechanical properties of PEEK were tested and analyzed by dynamic mechanical analysis (DMA). For FDM-prepared PEEK samples, the yield strength and elongation were 98.3 ± 0.49 MPa and 22.86 ± 2.12%, respectively. Compared with the yield strength of PEEK prepared by EM, the yield strength of PEEK prepared by FDM increased by 65.38%. The crystallinity of FDM-prepared and EM-prepared samples was calculated as 34.81% and 31.55%, respectively. Different processing methods resulted in differences in the microscopic morphology and crystallinity of two types of PEEK parts, leading to differences in mechanical properties. The internal micropores generated during the FDM processing of PEEK significantly reduced the elongation. Moreover, according to the DMA results, the glass transition activation energy of PEEK was obtained as ΔE = 685.07 kJ/mol based on the Arrhenius equation. Due to the excellent mechanical properties of PEEK prepared by FDM processing, it is promising for high-performance polymer applications in different fields.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548497/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on the Mechanical and Dynamic Thermomechanical Properties of Polyether Ether Ketone Based on Fused Deposition Modeling.\",\"authors\":\"Guocheng Liu, Ning Hu, Junjie Huang, Qiyong Tu, Fengxiang Xu\",\"doi\":\"10.3390/polym16213007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, the mechanical and dynamic thermomechanical properties of PEEK based on FDM are experimentally investigated and evaluated comprehensively. The tensile failure mechanism of PEEK prepared by FDM and extrusion modeling (EM) was analyzed by fracture morphology observation. By conducting a differential scanning calorimetry (DSC) test, the crystallinity of PEEK prepared by FDM and EM was measured. The dynamic thermomechanical properties of PEEK were tested and analyzed by dynamic mechanical analysis (DMA). For FDM-prepared PEEK samples, the yield strength and elongation were 98.3 ± 0.49 MPa and 22.86 ± 2.12%, respectively. Compared with the yield strength of PEEK prepared by EM, the yield strength of PEEK prepared by FDM increased by 65.38%. The crystallinity of FDM-prepared and EM-prepared samples was calculated as 34.81% and 31.55%, respectively. Different processing methods resulted in differences in the microscopic morphology and crystallinity of two types of PEEK parts, leading to differences in mechanical properties. The internal micropores generated during the FDM processing of PEEK significantly reduced the elongation. Moreover, according to the DMA results, the glass transition activation energy of PEEK was obtained as ΔE = 685.07 kJ/mol based on the Arrhenius equation. Due to the excellent mechanical properties of PEEK prepared by FDM processing, it is promising for high-performance polymer applications in different fields.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213007\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Experimental Investigation on the Mechanical and Dynamic Thermomechanical Properties of Polyether Ether Ketone Based on Fused Deposition Modeling.
In this work, the mechanical and dynamic thermomechanical properties of PEEK based on FDM are experimentally investigated and evaluated comprehensively. The tensile failure mechanism of PEEK prepared by FDM and extrusion modeling (EM) was analyzed by fracture morphology observation. By conducting a differential scanning calorimetry (DSC) test, the crystallinity of PEEK prepared by FDM and EM was measured. The dynamic thermomechanical properties of PEEK were tested and analyzed by dynamic mechanical analysis (DMA). For FDM-prepared PEEK samples, the yield strength and elongation were 98.3 ± 0.49 MPa and 22.86 ± 2.12%, respectively. Compared with the yield strength of PEEK prepared by EM, the yield strength of PEEK prepared by FDM increased by 65.38%. The crystallinity of FDM-prepared and EM-prepared samples was calculated as 34.81% and 31.55%, respectively. Different processing methods resulted in differences in the microscopic morphology and crystallinity of two types of PEEK parts, leading to differences in mechanical properties. The internal micropores generated during the FDM processing of PEEK significantly reduced the elongation. Moreover, according to the DMA results, the glass transition activation energy of PEEK was obtained as ΔE = 685.07 kJ/mol based on the Arrhenius equation. Due to the excellent mechanical properties of PEEK prepared by FDM processing, it is promising for high-performance polymer applications in different fields.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.