{"title":"提高注塑模具制造的放电加工生产率:实验优化研究。","authors":"Aurel Mihail Titu, Alina Bianca Pop","doi":"10.3390/polym16213019","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical erosion molding (EDM) is an unconventional machining technology widely used in the manufacture of injection molds for plastics injection molding for the creation of complex cavities and geometries. However, EDM productivity can be challenging, directly influencing mold manufacturing time and cost. This work aims to improve EDM productivity in the context of mold manufacturing for plastics injection molding. The research focuses on the optimization of processing parameters and strategies to reduce manufacturing time and increase process efficiency. Through a rigorous experimental approach, this work demonstrates that the optimization of EDM parameters and strategies can lead to significant productivity gains in the manufacture of plastic injection molds without compromising part quality and accuracy. This research involved a series of controlled experiments on a Mitsubishi EA28V Advance die-sinking EDM machine. Different combinations of pre-cutting parameters and processing strategies were investigated using copper electrodes on a heat-treated steel plate. Productivity was evaluated by measuring the volume of material removed, and geometrical accuracy was checked on a coordinate measuring machine. The experimental results showed a significant increase in productivity (up to 61%) by using the \"processing speed priority\" function of the EDM machine, with minimal impact on geometric accuracy. Furthermore, the optimized parameters led to an average reduction of 12% in dimensional deviations, indicating improved geometric accuracy of the machined parts. This paper also provides practical recommendations on the selection of optimal EDM processing parameters and strategies, depending on the specific requirements of plastic injection mold manufacturing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing EDM Productivity for Plastic Injection Mold Manufacturing: An Experimental Optimization Study.\",\"authors\":\"Aurel Mihail Titu, Alina Bianca Pop\",\"doi\":\"10.3390/polym16213019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical erosion molding (EDM) is an unconventional machining technology widely used in the manufacture of injection molds for plastics injection molding for the creation of complex cavities and geometries. However, EDM productivity can be challenging, directly influencing mold manufacturing time and cost. This work aims to improve EDM productivity in the context of mold manufacturing for plastics injection molding. The research focuses on the optimization of processing parameters and strategies to reduce manufacturing time and increase process efficiency. Through a rigorous experimental approach, this work demonstrates that the optimization of EDM parameters and strategies can lead to significant productivity gains in the manufacture of plastic injection molds without compromising part quality and accuracy. This research involved a series of controlled experiments on a Mitsubishi EA28V Advance die-sinking EDM machine. Different combinations of pre-cutting parameters and processing strategies were investigated using copper electrodes on a heat-treated steel plate. Productivity was evaluated by measuring the volume of material removed, and geometrical accuracy was checked on a coordinate measuring machine. The experimental results showed a significant increase in productivity (up to 61%) by using the \\\"processing speed priority\\\" function of the EDM machine, with minimal impact on geometric accuracy. Furthermore, the optimized parameters led to an average reduction of 12% in dimensional deviations, indicating improved geometric accuracy of the machined parts. This paper also provides practical recommendations on the selection of optimal EDM processing parameters and strategies, depending on the specific requirements of plastic injection mold manufacturing.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213019\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing EDM Productivity for Plastic Injection Mold Manufacturing: An Experimental Optimization Study.
Electrical erosion molding (EDM) is an unconventional machining technology widely used in the manufacture of injection molds for plastics injection molding for the creation of complex cavities and geometries. However, EDM productivity can be challenging, directly influencing mold manufacturing time and cost. This work aims to improve EDM productivity in the context of mold manufacturing for plastics injection molding. The research focuses on the optimization of processing parameters and strategies to reduce manufacturing time and increase process efficiency. Through a rigorous experimental approach, this work demonstrates that the optimization of EDM parameters and strategies can lead to significant productivity gains in the manufacture of plastic injection molds without compromising part quality and accuracy. This research involved a series of controlled experiments on a Mitsubishi EA28V Advance die-sinking EDM machine. Different combinations of pre-cutting parameters and processing strategies were investigated using copper electrodes on a heat-treated steel plate. Productivity was evaluated by measuring the volume of material removed, and geometrical accuracy was checked on a coordinate measuring machine. The experimental results showed a significant increase in productivity (up to 61%) by using the "processing speed priority" function of the EDM machine, with minimal impact on geometric accuracy. Furthermore, the optimized parameters led to an average reduction of 12% in dimensional deviations, indicating improved geometric accuracy of the machined parts. This paper also provides practical recommendations on the selection of optimal EDM processing parameters and strategies, depending on the specific requirements of plastic injection mold manufacturing.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.