通过强制空气对流提高天然橡胶的弹性热性能

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2024-10-31 DOI:10.3390/polym16213078
Emma Valdés, Enric Stern-Taulats, Nicolas Candau, Lluís Mañosa, Eduard Vives
{"title":"通过强制空气对流提高天然橡胶的弹性热性能","authors":"Emma Valdés, Enric Stern-Taulats, Nicolas Candau, Lluís Mañosa, Eduard Vives","doi":"10.3390/polym16213078","DOIUrl":null,"url":null,"abstract":"<p><p>We study the enhancement of the elastocaloric effect in natural rubber by using forced air convection to favour heat extraction during the elongation stage of a stretching-unstretching cycle. Elastocaloric performance is quantified by means of the adiabatic undercooling that occurs after fast removal of the stress, measured by infrared thermography. To ensure accuracy, spatial averaging on thermal maps of the sample surface is performed since undercooled samples display heterogeneities caused by various factors. The influence of the stretching velocity and the air velocity is analysed. The findings indicate that there is an optimal air velocity that maximises adiabatic undercooling, with stretching velocities needing to be high enough to enhance cooling power. Our experiments allowed the characterisation of the dependence of the Newton heat transfer coefficient on the air convection velocity, which revealed an enhancement up to 600% for air velocities around 4 m/s.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the Elastocaloric Performance of Natural Rubber by Forced Air Convection.\",\"authors\":\"Emma Valdés, Enric Stern-Taulats, Nicolas Candau, Lluís Mañosa, Eduard Vives\",\"doi\":\"10.3390/polym16213078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the enhancement of the elastocaloric effect in natural rubber by using forced air convection to favour heat extraction during the elongation stage of a stretching-unstretching cycle. Elastocaloric performance is quantified by means of the adiabatic undercooling that occurs after fast removal of the stress, measured by infrared thermography. To ensure accuracy, spatial averaging on thermal maps of the sample surface is performed since undercooled samples display heterogeneities caused by various factors. The influence of the stretching velocity and the air velocity is analysed. The findings indicate that there is an optimal air velocity that maximises adiabatic undercooling, with stretching velocities needing to be high enough to enhance cooling power. Our experiments allowed the characterisation of the dependence of the Newton heat transfer coefficient on the air convection velocity, which revealed an enhancement up to 600% for air velocities around 4 m/s.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213078\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213078","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在拉伸-拉伸循环的伸长阶段,利用强制空气对流促进热量提取,从而增强天然橡胶的弹性热效应。通过红外热成像技术测量快速消除应力后出现的绝热过冷度,对弹性热效应进行量化。为了确保准确性,对样品表面的热图进行了空间平均处理,因为过冷样品会因各种因素而显示出异质性。分析了拉伸速度和空气速度的影响。研究结果表明,有一个最佳的空气速度可以最大限度地提高绝热过冷度,拉伸速度需要足够高以提高冷却能力。通过实验,我们可以确定牛顿传热系数与空气对流速度的关系,结果表明,当空气速度在 4 米/秒左右时,牛顿传热系数可提高 600%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of the Elastocaloric Performance of Natural Rubber by Forced Air Convection.

We study the enhancement of the elastocaloric effect in natural rubber by using forced air convection to favour heat extraction during the elongation stage of a stretching-unstretching cycle. Elastocaloric performance is quantified by means of the adiabatic undercooling that occurs after fast removal of the stress, measured by infrared thermography. To ensure accuracy, spatial averaging on thermal maps of the sample surface is performed since undercooled samples display heterogeneities caused by various factors. The influence of the stretching velocity and the air velocity is analysed. The findings indicate that there is an optimal air velocity that maximises adiabatic undercooling, with stretching velocities needing to be high enough to enhance cooling power. Our experiments allowed the characterisation of the dependence of the Newton heat transfer coefficient on the air convection velocity, which revealed an enhancement up to 600% for air velocities around 4 m/s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信