Ramona Ciobanu, Florin Bucatariu, Marcela Mihai, Carmen Teodosiu
{"title":"硅基复合吸附剂用于去除水溶液中的重金属离子。","authors":"Ramona Ciobanu, Florin Bucatariu, Marcela Mihai, Carmen Teodosiu","doi":"10.3390/polym16213048","DOIUrl":null,"url":null,"abstract":"<p><p>Weak polyelectrolyte chains are versatile polymeric materials due to the large number of functional groups that can be used in different environmental applications. Herein, one weak polycation (polyethyleneimine, PEI) and two polyanions (poly(acrylic acid), PAA, and poly(sodium methacrylate), PMAA) were directly deposited through precipitation of an inter-polyelectrolyte coacervate onto the silica surface (IS), followed by glutaraldehyde (GA) crosslinking and extraction of polyanions chains. Four core-shell composites based on silica were synthesized and tested for adsorption of lead (Pb<sup>2+</sup>) and nickel (Ni<sup>2+</sup>) as model pollutants in batch sorption experiments on the laboratory scale. The sorbed/desorbed amounts depended on the crosslinking degree of the composite shell, as well as on the type of anionic polyelectrolyte. After multiple loading/release cycles of the heavy metal ions, the maximum sorption capacities were situated between 5-10 mg Pb<sup>2+</sup>/g composite and 1-6 mg Ni<sup>2+</sup>/g composite. The strong crosslinked composites (r = 1.0) exhibited higher amounts of heavy metal ions (Me<sup>2+</sup>) sorbed than the less crosslinked ones, with less PEI on the surface but with more flexible chains being more efficient than more PEI with less flexible chains. Core-shell composites based on silica and weak polyelectrolytes could act as sorbent materials, which may be used in water or wastewater treatment.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548371/pdf/","citationCount":"0","resultStr":"{\"title\":\"Silica-Based Composite Sorbents for Heavy Metal Ions Removal from Aqueous Solutions.\",\"authors\":\"Ramona Ciobanu, Florin Bucatariu, Marcela Mihai, Carmen Teodosiu\",\"doi\":\"10.3390/polym16213048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weak polyelectrolyte chains are versatile polymeric materials due to the large number of functional groups that can be used in different environmental applications. Herein, one weak polycation (polyethyleneimine, PEI) and two polyanions (poly(acrylic acid), PAA, and poly(sodium methacrylate), PMAA) were directly deposited through precipitation of an inter-polyelectrolyte coacervate onto the silica surface (IS), followed by glutaraldehyde (GA) crosslinking and extraction of polyanions chains. Four core-shell composites based on silica were synthesized and tested for adsorption of lead (Pb<sup>2+</sup>) and nickel (Ni<sup>2+</sup>) as model pollutants in batch sorption experiments on the laboratory scale. The sorbed/desorbed amounts depended on the crosslinking degree of the composite shell, as well as on the type of anionic polyelectrolyte. After multiple loading/release cycles of the heavy metal ions, the maximum sorption capacities were situated between 5-10 mg Pb<sup>2+</sup>/g composite and 1-6 mg Ni<sup>2+</sup>/g composite. The strong crosslinked composites (r = 1.0) exhibited higher amounts of heavy metal ions (Me<sup>2+</sup>) sorbed than the less crosslinked ones, with less PEI on the surface but with more flexible chains being more efficient than more PEI with less flexible chains. Core-shell composites based on silica and weak polyelectrolytes could act as sorbent materials, which may be used in water or wastewater treatment.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548371/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Silica-Based Composite Sorbents for Heavy Metal Ions Removal from Aqueous Solutions.
Weak polyelectrolyte chains are versatile polymeric materials due to the large number of functional groups that can be used in different environmental applications. Herein, one weak polycation (polyethyleneimine, PEI) and two polyanions (poly(acrylic acid), PAA, and poly(sodium methacrylate), PMAA) were directly deposited through precipitation of an inter-polyelectrolyte coacervate onto the silica surface (IS), followed by glutaraldehyde (GA) crosslinking and extraction of polyanions chains. Four core-shell composites based on silica were synthesized and tested for adsorption of lead (Pb2+) and nickel (Ni2+) as model pollutants in batch sorption experiments on the laboratory scale. The sorbed/desorbed amounts depended on the crosslinking degree of the composite shell, as well as on the type of anionic polyelectrolyte. After multiple loading/release cycles of the heavy metal ions, the maximum sorption capacities were situated between 5-10 mg Pb2+/g composite and 1-6 mg Ni2+/g composite. The strong crosslinked composites (r = 1.0) exhibited higher amounts of heavy metal ions (Me2+) sorbed than the less crosslinked ones, with less PEI on the surface but with more flexible chains being more efficient than more PEI with less flexible chains. Core-shell composites based on silica and weak polyelectrolytes could act as sorbent materials, which may be used in water or wastewater treatment.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.