Yuanhua Luo , Yan Chen , Nengyan Fang, Lan Kong, Rongyan Lin, Yiquan Chen, Ronghui Fan, Huaiqin Zhong, Minling Huang, Xiuxian Ye
{"title":"多组学分析揭示了 OnDIVARICATA 3 参与控制 Oncidium hybridum 的动态花色。","authors":"Yuanhua Luo , Yan Chen , Nengyan Fang, Lan Kong, Rongyan Lin, Yiquan Chen, Ronghui Fan, Huaiqin Zhong, Minling Huang, Xiuxian Ye","doi":"10.1016/j.plaphy.2024.109277","DOIUrl":null,"url":null,"abstract":"<div><div>Flower color is one of the main quality and economic traits of ornamental plants, and a large amount of research on flower color mainly focuses on the differences between varieties, while there were few reports on the change of flower color at different developmental stages. In this study, the metabolome and transcriptome of a new strain ‘XM-1’ with dynamic color changes of <em>Oncidium</em> were analyzed. The results showed that rutin, quercetin and carotenoids metabolism decreased significantly during the change of color from yellow to white. Analyzing the correlation network between metabolites and differential expressed genes, 25 key structural genes were detected and regulated by multiple MYB-related transcription factors. The MYB-related transcription factor <em>Cluster-100966.1_OnDIVARICATA 3</em> was selected for further analysis. The phylogenetic tree of DIVARICATA in different species of Orchidaceae and <em>Arabidopsis thaliana</em> was constructed and the most closely related members were selected for sequence comparison. The results showed that OnDIVARICATA 3 contained MYB-like conserved domains. Subcellular localization results showed that OnDIVARICATA 3 was located in the nucleus. In overexpressing <em>OnDIVARICATA 3</em> transgenic hairy roots, the expression of flower color related genes <em>FLS</em>, <em>ZEP</em>, and <em>CHYB</em> were significantly up-regulated. In summary, this study characterized the key metabolic pathways in the formation of the dynamic flower color of <em>Oncidium hybridum</em>, and constructed the regulatory network of the MYB-related. These results laid a theoretical foundation for the subsequent research on flower color and genetic engineering technology breeding of <em>Oncidium hybridum</em>.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109277"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiomics analysis reveals the involvement of OnDIVARICATA 3 in controlling dynamic flower coloring of Oncidium hybridum\",\"authors\":\"Yuanhua Luo , Yan Chen , Nengyan Fang, Lan Kong, Rongyan Lin, Yiquan Chen, Ronghui Fan, Huaiqin Zhong, Minling Huang, Xiuxian Ye\",\"doi\":\"10.1016/j.plaphy.2024.109277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flower color is one of the main quality and economic traits of ornamental plants, and a large amount of research on flower color mainly focuses on the differences between varieties, while there were few reports on the change of flower color at different developmental stages. In this study, the metabolome and transcriptome of a new strain ‘XM-1’ with dynamic color changes of <em>Oncidium</em> were analyzed. The results showed that rutin, quercetin and carotenoids metabolism decreased significantly during the change of color from yellow to white. Analyzing the correlation network between metabolites and differential expressed genes, 25 key structural genes were detected and regulated by multiple MYB-related transcription factors. The MYB-related transcription factor <em>Cluster-100966.1_OnDIVARICATA 3</em> was selected for further analysis. The phylogenetic tree of DIVARICATA in different species of Orchidaceae and <em>Arabidopsis thaliana</em> was constructed and the most closely related members were selected for sequence comparison. The results showed that OnDIVARICATA 3 contained MYB-like conserved domains. Subcellular localization results showed that OnDIVARICATA 3 was located in the nucleus. In overexpressing <em>OnDIVARICATA 3</em> transgenic hairy roots, the expression of flower color related genes <em>FLS</em>, <em>ZEP</em>, and <em>CHYB</em> were significantly up-regulated. In summary, this study characterized the key metabolic pathways in the formation of the dynamic flower color of <em>Oncidium hybridum</em>, and constructed the regulatory network of the MYB-related. These results laid a theoretical foundation for the subsequent research on flower color and genetic engineering technology breeding of <em>Oncidium hybridum</em>.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"217 \",\"pages\":\"Article 109277\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824009458\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Multiomics analysis reveals the involvement of OnDIVARICATA 3 in controlling dynamic flower coloring of Oncidium hybridum
Flower color is one of the main quality and economic traits of ornamental plants, and a large amount of research on flower color mainly focuses on the differences between varieties, while there were few reports on the change of flower color at different developmental stages. In this study, the metabolome and transcriptome of a new strain ‘XM-1’ with dynamic color changes of Oncidium were analyzed. The results showed that rutin, quercetin and carotenoids metabolism decreased significantly during the change of color from yellow to white. Analyzing the correlation network between metabolites and differential expressed genes, 25 key structural genes were detected and regulated by multiple MYB-related transcription factors. The MYB-related transcription factor Cluster-100966.1_OnDIVARICATA 3 was selected for further analysis. The phylogenetic tree of DIVARICATA in different species of Orchidaceae and Arabidopsis thaliana was constructed and the most closely related members were selected for sequence comparison. The results showed that OnDIVARICATA 3 contained MYB-like conserved domains. Subcellular localization results showed that OnDIVARICATA 3 was located in the nucleus. In overexpressing OnDIVARICATA 3 transgenic hairy roots, the expression of flower color related genes FLS, ZEP, and CHYB were significantly up-regulated. In summary, this study characterized the key metabolic pathways in the formation of the dynamic flower color of Oncidium hybridum, and constructed the regulatory network of the MYB-related. These results laid a theoretical foundation for the subsequent research on flower color and genetic engineering technology breeding of Oncidium hybridum.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.