丰富环境是否能减轻长期低剂量辐射照射对小鼠的不良影响?

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Daisaku Takai
{"title":"丰富环境是否能减轻长期低剂量辐射照射对小鼠的不良影响?","authors":"Daisaku Takai","doi":"10.1093/rpd/ncae090","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice. Irradiated mice were shown to have a significantly reduced ability to eliminate inoculated tumors. The results indicate that EE may be able to mitigate the adverse effects of low-dose-rate radiation exposure, but the effects vary greatly and are complex depending on the type of EE.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does environmental enrichment mitigate the adverse effects of chronic low dose-rate radiation exposure on mice?\",\"authors\":\"Daisaku Takai\",\"doi\":\"10.1093/rpd/ncae090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice. Irradiated mice were shown to have a significantly reduced ability to eliminate inoculated tumors. The results indicate that EE may be able to mitigate the adverse effects of low-dose-rate radiation exposure, but the effects vary greatly and are complex depending on the type of EE.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncae090\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae090","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

该研究旨在确定环境富集(EE)是否能减轻小鼠长期低剂量辐射照射的不良影响。雌性 B6C3F1 小鼠自 8 周龄起在无特定病原体的条件下连续接受 20 mGy d-1 伽马射线照射 400 天。辐照结束后,将来源于卵巢颗粒细胞瘤的 OV3121 细胞皮下接种到年龄匹配的非辐照对照小鼠身上。结果表明,辐照小鼠消除接种肿瘤的能力明显下降。结果表明,EE 可能能够减轻低剂量辐照的不良影响,但其效果因 EE 类型的不同而有很大差异,而且非常复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does environmental enrichment mitigate the adverse effects of chronic low dose-rate radiation exposure on mice?

The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice. Irradiated mice were shown to have a significantly reduced ability to eliminate inoculated tumors. The results indicate that EE may be able to mitigate the adverse effects of low-dose-rate radiation exposure, but the effects vary greatly and are complex depending on the type of EE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信