CT/MRI LI-RADS 2024 更新:治疗反应评估。

IF 12.1 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiology Pub Date : 2024-11-01 DOI:10.1148/radiol.232408
Anum Aslam, Victoria Chernyak, Frank H Miller, Mustafa Bashir, Richard Do, Claude Sirlin, Robert J Lewandowski, Charles Y Kim, Ania Zofia Kielar, Avinash R Kambadakone, Hooman Yarmohammadi, Edward Kim, Dawn Owen, Resmi A Charalel, Anuradha Shenoy-Bhangle, Lauren M Burke, Mishal Mendiratta-Lala
{"title":"CT/MRI LI-RADS 2024 更新:治疗反应评估。","authors":"Anum Aslam, Victoria Chernyak, Frank H Miller, Mustafa Bashir, Richard Do, Claude Sirlin, Robert J Lewandowski, Charles Y Kim, Ania Zofia Kielar, Avinash R Kambadakone, Hooman Yarmohammadi, Edward Kim, Dawn Owen, Resmi A Charalel, Anuradha Shenoy-Bhangle, Lauren M Burke, Mishal Mendiratta-Lala","doi":"10.1148/radiol.232408","DOIUrl":null,"url":null,"abstract":"<p><p>With the rising incidence of hepatocellular carcinoma, there has been increasing use of local-regional therapy (LRT) to downstage or bridge to transplant, for definitive treatment, and for palliation. The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) Treatment Response Assessment (TRA) algorithm provides guidance for step-by-step tumor assessment after LRT and standardized reporting. Current evidence suggests that the algorithm performs well in the assessment of tumor response to arterial embolic and loco-ablative therapies and fair when assessing response to radiation-based therapies, with limited data to validate the latter. Both evidence-based and expert-based refinements of the algorithm are needed to improve its diagnostic accuracy after varying types of LRT. This review provides an overview of the challenges and limitations of the LI-RADS TRA algorithm version 2017 and discusses the refinements introduced in the updated 2024 LI-RADS algorithm for CT/MRI.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"313 2","pages":"e232408"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605109/pdf/","citationCount":"0","resultStr":"{\"title\":\"CT/MRI LI-RADS 2024 Update: Treatment Response Assessment.\",\"authors\":\"Anum Aslam, Victoria Chernyak, Frank H Miller, Mustafa Bashir, Richard Do, Claude Sirlin, Robert J Lewandowski, Charles Y Kim, Ania Zofia Kielar, Avinash R Kambadakone, Hooman Yarmohammadi, Edward Kim, Dawn Owen, Resmi A Charalel, Anuradha Shenoy-Bhangle, Lauren M Burke, Mishal Mendiratta-Lala\",\"doi\":\"10.1148/radiol.232408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rising incidence of hepatocellular carcinoma, there has been increasing use of local-regional therapy (LRT) to downstage or bridge to transplant, for definitive treatment, and for palliation. The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) Treatment Response Assessment (TRA) algorithm provides guidance for step-by-step tumor assessment after LRT and standardized reporting. Current evidence suggests that the algorithm performs well in the assessment of tumor response to arterial embolic and loco-ablative therapies and fair when assessing response to radiation-based therapies, with limited data to validate the latter. Both evidence-based and expert-based refinements of the algorithm are needed to improve its diagnostic accuracy after varying types of LRT. This review provides an overview of the challenges and limitations of the LI-RADS TRA algorithm version 2017 and discusses the refinements introduced in the updated 2024 LI-RADS algorithm for CT/MRI.</p>\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":\"313 2\",\"pages\":\"e232408\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.232408\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.232408","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

随着肝细胞癌发病率的上升,越来越多的人开始使用局部区域治疗(LRT)来降低分期或为移植搭桥、进行最终治疗和缓解病情。CT/MRI 肝脏成像报告和数据系统 (LI-RADS) 治疗反应评估 (TRA) 算法为 LRT 后的逐步肿瘤评估和标准化报告提供了指导。目前的证据表明,该算法在评估肿瘤对动脉栓塞和局部消融治疗的反应时表现良好,而在评估对放射治疗的反应时表现一般,但后者的验证数据有限。为了提高该算法在不同类型的局部放疗后的诊断准确性,需要对该算法进行循证和专家改进。本综述概述了2017版LI-RADS TRA算法面临的挑战和局限性,并讨论了2024年LI-RADS CT/MRI更新算法中引入的改进措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CT/MRI LI-RADS 2024 Update: Treatment Response Assessment.

With the rising incidence of hepatocellular carcinoma, there has been increasing use of local-regional therapy (LRT) to downstage or bridge to transplant, for definitive treatment, and for palliation. The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) Treatment Response Assessment (TRA) algorithm provides guidance for step-by-step tumor assessment after LRT and standardized reporting. Current evidence suggests that the algorithm performs well in the assessment of tumor response to arterial embolic and loco-ablative therapies and fair when assessing response to radiation-based therapies, with limited data to validate the latter. Both evidence-based and expert-based refinements of the algorithm are needed to improve its diagnostic accuracy after varying types of LRT. This review provides an overview of the challenges and limitations of the LI-RADS TRA algorithm version 2017 and discusses the refinements introduced in the updated 2024 LI-RADS algorithm for CT/MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiology
Radiology 医学-核医学
CiteScore
35.20
自引率
3.00%
发文量
596
审稿时长
3.6 months
期刊介绍: Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies. Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信