超短电子脉冲增强活性氧的产生。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2024-11-13 eCollection Date: 2024-11-01 DOI:10.1098/rsos.240898
J Tye, O Solgaard, R J England, J V Trapp, A Fielding, C P Brown
{"title":"超短电子脉冲增强活性氧的产生。","authors":"J Tye, O Solgaard, R J England, J V Trapp, A Fielding, C P Brown","doi":"10.1098/rsos.240898","DOIUrl":null,"url":null,"abstract":"<p><p>The development of laser-driven accelerators-on-chip has provided an opportunity to miniaturize devices for electron radiotherapy delivery. Laser-driven accelerators produce highly time-compressed electron pulses, on the 100 fs to 1 ps scale. This delivers electrons at high peak power yet low average beam current compared with conventional delivery devices, which generate pulses of approximately 3 µs. The biophysical effects of this time structure, however, are unclear. Here, we use a Monte Carlo simulation approach to explore the effects of the electron beam time structure on the production of reactive oxygen species (ROS) in water. Our results show a power law increase in the generation of hydroxyl ions per deposited electron with decreasing pulse length over the pulse length range of 10 µs to 100 fs. Similar trends were observed for hydrogen peroxide, superoxide, hydroperoxyl, hydronium and solvated electrons. In practical terms, this indicates a fourfold increase in the efficiency of free radical production for sub-picosecond pulses, relative to that of conventional microsecond pulses, for the same number of deposited electrons.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 11","pages":"240898"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557238/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancement of reactive oxygen species production by ultra-short electron pulses.\",\"authors\":\"J Tye, O Solgaard, R J England, J V Trapp, A Fielding, C P Brown\",\"doi\":\"10.1098/rsos.240898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of laser-driven accelerators-on-chip has provided an opportunity to miniaturize devices for electron radiotherapy delivery. Laser-driven accelerators produce highly time-compressed electron pulses, on the 100 fs to 1 ps scale. This delivers electrons at high peak power yet low average beam current compared with conventional delivery devices, which generate pulses of approximately 3 µs. The biophysical effects of this time structure, however, are unclear. Here, we use a Monte Carlo simulation approach to explore the effects of the electron beam time structure on the production of reactive oxygen species (ROS) in water. Our results show a power law increase in the generation of hydroxyl ions per deposited electron with decreasing pulse length over the pulse length range of 10 µs to 100 fs. Similar trends were observed for hydrogen peroxide, superoxide, hydroperoxyl, hydronium and solvated electrons. In practical terms, this indicates a fourfold increase in the efficiency of free radical production for sub-picosecond pulses, relative to that of conventional microsecond pulses, for the same number of deposited electrons.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 11\",\"pages\":\"240898\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240898\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240898","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

激光驱动片上加速器的发展为电子放射治疗设备的微型化提供了契机。激光驱动加速器可产生时间高度压缩的电子脉冲,范围在 100 fs 到 1 ps 之间。与产生约 3 微秒脉冲的传统传输设备相比,这种设备能以较高的峰值功率和较低的平均束流传输电子。然而,这种时间结构的生物物理效应尚不清楚。在这里,我们使用蒙特卡罗模拟方法来探索电子束时间结构对水中活性氧(ROS)产生的影响。结果表明,在 10 µs 到 100 fs 的脉冲长度范围内,随着脉冲长度的减少,每个沉积电子产生的羟基离子呈幂律增长。过氧化氢、超氧化物、氢过氧化物、氢离子和溶解电子也呈现出类似的趋势。实际上,这表明在沉积电子数量相同的情况下,亚皮秒脉冲产生自由基的效率是传统微秒脉冲的四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of reactive oxygen species production by ultra-short electron pulses.

The development of laser-driven accelerators-on-chip has provided an opportunity to miniaturize devices for electron radiotherapy delivery. Laser-driven accelerators produce highly time-compressed electron pulses, on the 100 fs to 1 ps scale. This delivers electrons at high peak power yet low average beam current compared with conventional delivery devices, which generate pulses of approximately 3 µs. The biophysical effects of this time structure, however, are unclear. Here, we use a Monte Carlo simulation approach to explore the effects of the electron beam time structure on the production of reactive oxygen species (ROS) in water. Our results show a power law increase in the generation of hydroxyl ions per deposited electron with decreasing pulse length over the pulse length range of 10 µs to 100 fs. Similar trends were observed for hydrogen peroxide, superoxide, hydroperoxyl, hydronium and solvated electrons. In practical terms, this indicates a fourfold increase in the efficiency of free radical production for sub-picosecond pulses, relative to that of conventional microsecond pulses, for the same number of deposited electrons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信