{"title":"定向理论与生命起源。","authors":"Lloyd A Demetrius","doi":"10.1098/rsos.230623","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of cellular life can be described in terms of the transition from inorganic matter to the emergence of cooperative assemblies of organic matter: DNA and proteins, capable of replication and metabolism. Directionality theory is a mathematical theory of the collective behaviour of networks of organic matter: activated macromolecules, cells and higher organisms. Evolutionary entropy, a generalization of the thermodynamic entropy of Boltzmann, is a statistical measure of the cooperativity of the biotic components. The cornerstone of Directionality theory is the <i>Entropic Principle of Evolution:</i> evolutionary entropy <i>increases</i> in systems driven by a stable energy source, and <i>decreases</i> in systems subject to a fluctuating energy source. This article invokes the Entropic Principle of Evolution-an extension to biological systems of the Second Law of Thermodynamics-to provide an adaptive rationale for the following sequence of transformations that define the emergence of cellular life: (i) the self-assembly of activated macromolecules from inorganic matter; (ii) the emergence of an RNA world, defined by RNA molecules with catalytic and replicative properties; and (iii) the origin of cellular life, the integration of the three carbon-based polymers-DNA, proteins and lipids, to generate a metabolic and replicative unit.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 11","pages":"230623"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558456/pdf/","citationCount":"0","resultStr":"{\"title\":\"Directionality theory and the origin of life.\",\"authors\":\"Lloyd A Demetrius\",\"doi\":\"10.1098/rsos.230623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The origin of cellular life can be described in terms of the transition from inorganic matter to the emergence of cooperative assemblies of organic matter: DNA and proteins, capable of replication and metabolism. Directionality theory is a mathematical theory of the collective behaviour of networks of organic matter: activated macromolecules, cells and higher organisms. Evolutionary entropy, a generalization of the thermodynamic entropy of Boltzmann, is a statistical measure of the cooperativity of the biotic components. The cornerstone of Directionality theory is the <i>Entropic Principle of Evolution:</i> evolutionary entropy <i>increases</i> in systems driven by a stable energy source, and <i>decreases</i> in systems subject to a fluctuating energy source. This article invokes the Entropic Principle of Evolution-an extension to biological systems of the Second Law of Thermodynamics-to provide an adaptive rationale for the following sequence of transformations that define the emergence of cellular life: (i) the self-assembly of activated macromolecules from inorganic matter; (ii) the emergence of an RNA world, defined by RNA molecules with catalytic and replicative properties; and (iii) the origin of cellular life, the integration of the three carbon-based polymers-DNA, proteins and lipids, to generate a metabolic and replicative unit.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 11\",\"pages\":\"230623\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.230623\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.230623","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The origin of cellular life can be described in terms of the transition from inorganic matter to the emergence of cooperative assemblies of organic matter: DNA and proteins, capable of replication and metabolism. Directionality theory is a mathematical theory of the collective behaviour of networks of organic matter: activated macromolecules, cells and higher organisms. Evolutionary entropy, a generalization of the thermodynamic entropy of Boltzmann, is a statistical measure of the cooperativity of the biotic components. The cornerstone of Directionality theory is the Entropic Principle of Evolution: evolutionary entropy increases in systems driven by a stable energy source, and decreases in systems subject to a fluctuating energy source. This article invokes the Entropic Principle of Evolution-an extension to biological systems of the Second Law of Thermodynamics-to provide an adaptive rationale for the following sequence of transformations that define the emergence of cellular life: (i) the self-assembly of activated macromolecules from inorganic matter; (ii) the emergence of an RNA world, defined by RNA molecules with catalytic and replicative properties; and (iii) the origin of cellular life, the integration of the three carbon-based polymers-DNA, proteins and lipids, to generate a metabolic and replicative unit.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.