SWEET 介导的糖分配变化会影响光合作用性能和植物对干旱的反应。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Emilie Aubry, Gilles Clément, Elodie Gilbault, Sylvie Dinant, Rozenn Le Hir
{"title":"SWEET 介导的糖分配变化会影响光合作用性能和植物对干旱的反应。","authors":"Emilie Aubry, Gilles Clément, Elodie Gilbault, Sylvie Dinant, Rozenn Le Hir","doi":"10.1111/ppl.14623","DOIUrl":null,"url":null,"abstract":"<p><p>Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14623"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought.\",\"authors\":\"Emilie Aubry, Gilles Clément, Elodie Gilbault, Sylvie Dinant, Rozenn Le Hir\",\"doi\":\"10.1111/ppl.14623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 6\",\"pages\":\"e14623\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14623\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14623","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过光合作用产生的糖类是植物生长和应对环境变化所合成和使用的所有有机化合物的核心。在植物的整个生命周期中,糖类的生产、运输和利用都受到高度调控和整合。维持不同亚细胞区室之间和细胞之间的糖分分配对于调整光合作用性能和对非生物限制的响应非常重要。我们研究了拟南芥中编码 SWEET 糖转运体的四个基因(SWEET11、SWEET12、SWEET16 和 SWEET17)的突变对植物光合作用和干旱响应的影响。我们的研究结果表明,SWEET11 和 SWEET12 基因突变会导致叶肉细胞和韧皮部实质细胞中的细胞糖增加,从而影响多个光合作用相关参数。此外,我们的研究结果表明,在 swt11swt12 双突变体中,蔗糖诱导的气孔关闭反馈机制效率很低。另一方面,在 swt16swt17 双突变体中测量到的叶肉细胞和维管细胞中果糖分配的变化对气体交换产生了积极影响,这可能是通过增加淀粉合成和提高液泡糖储存来实现的。最后,我们认为,四重突变体中观察到的糖分分配受损,而不是糖的总量,是导致其对干旱的敏感性增强的原因。这项工作强调了在光合作用表现和植物对干旱的反应中考虑 SWEET 介导的糖分分配而不是总糖含量的重要性。这些知识将为设计新策略,在充满挑战的环境中保持植物生产力铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought.

Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信