受限量子控制的噪声量子计量学极限。

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Sisi Zhou
{"title":"受限量子控制的噪声量子计量学极限。","authors":"Sisi Zhou","doi":"10.1103/PhysRevLett.133.170801","DOIUrl":null,"url":null,"abstract":"<p><p>The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, ∝1/sqrt[n]) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"170801"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limits of Noisy Quantum Metrology with Restricted Quantum Controls.\",\"authors\":\"Sisi Zhou\",\"doi\":\"10.1103/PhysRevLett.133.170801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, ∝1/sqrt[n]) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"133 17\",\"pages\":\"170801\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.133.170801\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.170801","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海森堡极限[(HL),估计误差标度为 1/n]和标准量子极限(SQL,∝1/sqrt[n])是在 n 份量子信道中估计未知参数的两个基本极限,可通过全量子控制(如量子纠错(QEC))实现。但是,当量子纠错(QEC)不可用时,这些极限是否还能在受限量子设备中实现,例如,仅使用单元控制或有界系统大小,目前还不得而知。在这封信中,我们发现了在限制性控制下估计量子比特通道的各种新极限。在各种情况下,HL 都无法实现,这表明 QEC 在实现 HL 方面的必要性。此外,还确定了实现 SQL 的必要条件和充分条件,其中确定了一种单量子比特单元控制协议来实现某些类型噪声信道的 SQL,并证明了其他情况下估计误差的恒定下限。本文还提供了一个单元协议的实际例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limits of Noisy Quantum Metrology with Restricted Quantum Controls.

The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, ∝1/sqrt[n]) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信