{"title":"利用超导微ubits 减少耦合器辅助泄漏,实现可扩展量子纠错。","authors":"Xiaohan Yang, Ji Chu, Zechen Guo, Wenhui Huang, Yongqi Liang, Jiawei Liu, Jiawei Qiu, Xuandong Sun, Ziyu Tao, Jiawei Zhang, Jiajian Zhang, Libo Zhang, Yuxuan Zhou, Weijie Guo, Ling Hu, Ji Jiang, Yang Liu, Xiayu Linpeng, Tingyong Chen, Yuanzhen Chen, Jingjing Niu, Song Liu, Youpeng Zhong, Dapeng Yu","doi":"10.1103/PhysRevLett.133.170601","DOIUrl":null,"url":null,"abstract":"<p><p>Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine quantum error correction (QEC) scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"170601"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits.\",\"authors\":\"Xiaohan Yang, Ji Chu, Zechen Guo, Wenhui Huang, Yongqi Liang, Jiawei Liu, Jiawei Qiu, Xuandong Sun, Ziyu Tao, Jiawei Zhang, Jiajian Zhang, Libo Zhang, Yuxuan Zhou, Weijie Guo, Ling Hu, Ji Jiang, Yang Liu, Xiayu Linpeng, Tingyong Chen, Yuanzhen Chen, Jingjing Niu, Song Liu, Youpeng Zhong, Dapeng Yu\",\"doi\":\"10.1103/PhysRevLett.133.170601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine quantum error correction (QEC) scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"133 17\",\"pages\":\"170601\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.133.170601\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.170601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits.
Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine quantum error correction (QEC) scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks