{"title":"利用机器学习进行前列腺癌预后分析:生存分析方法评述。","authors":"Garvita Ahuja , Ishleen Kaur , Puneet Singh Lamba , Deepali Virmani , Achin Jain , Somenath Chakraborty , Saurav Mallik","doi":"10.1016/j.prp.2024.155687","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate Cancer is a disease that affects the male reproductive system. The irregularity of the symptoms makes it hard for the clinicians to pinpoint the disease in the earlier stages. Techniques such as Machine Learning, Data Science, Deep Learning, etc. have been employed on the biomedical data to identify the symptoms of the patients and predict their stage and the chances of their survival. The survival analysis of prostate cancer is essential as it guides the clinicians to recommend the optimal treatment for the patient. Building an accurate model from electronic data using machine learning is quite difficult. This review article presents a systematic literature review focused on the area of prostate cancer survival analysis utilizing machine learning and other soft computing techniques. Through an extensive evaluation of the available research, we have identified and summarized key insights from the selected studies. A comprehensive comparison of various approaches for survival and treatment predictions in the literature has been conducted. Additionally, the gaps in previous research have been discussed, highlighting areas for further investigation and providing future recommendations. By synthesizing the current knowledge in prostate cancer survival analysis, this review contributes to the understanding of the field and lays the foundation for future advancements.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"264 ","pages":"Article 155687"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prostate cancer prognosis using machine learning: A critical review of survival analysis methods\",\"authors\":\"Garvita Ahuja , Ishleen Kaur , Puneet Singh Lamba , Deepali Virmani , Achin Jain , Somenath Chakraborty , Saurav Mallik\",\"doi\":\"10.1016/j.prp.2024.155687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prostate Cancer is a disease that affects the male reproductive system. The irregularity of the symptoms makes it hard for the clinicians to pinpoint the disease in the earlier stages. Techniques such as Machine Learning, Data Science, Deep Learning, etc. have been employed on the biomedical data to identify the symptoms of the patients and predict their stage and the chances of their survival. The survival analysis of prostate cancer is essential as it guides the clinicians to recommend the optimal treatment for the patient. Building an accurate model from electronic data using machine learning is quite difficult. This review article presents a systematic literature review focused on the area of prostate cancer survival analysis utilizing machine learning and other soft computing techniques. Through an extensive evaluation of the available research, we have identified and summarized key insights from the selected studies. A comprehensive comparison of various approaches for survival and treatment predictions in the literature has been conducted. Additionally, the gaps in previous research have been discussed, highlighting areas for further investigation and providing future recommendations. By synthesizing the current knowledge in prostate cancer survival analysis, this review contributes to the understanding of the field and lays the foundation for future advancements.</div></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":\"264 \",\"pages\":\"Article 155687\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033824005983\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824005983","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Prostate cancer prognosis using machine learning: A critical review of survival analysis methods
Prostate Cancer is a disease that affects the male reproductive system. The irregularity of the symptoms makes it hard for the clinicians to pinpoint the disease in the earlier stages. Techniques such as Machine Learning, Data Science, Deep Learning, etc. have been employed on the biomedical data to identify the symptoms of the patients and predict their stage and the chances of their survival. The survival analysis of prostate cancer is essential as it guides the clinicians to recommend the optimal treatment for the patient. Building an accurate model from electronic data using machine learning is quite difficult. This review article presents a systematic literature review focused on the area of prostate cancer survival analysis utilizing machine learning and other soft computing techniques. Through an extensive evaluation of the available research, we have identified and summarized key insights from the selected studies. A comprehensive comparison of various approaches for survival and treatment predictions in the literature has been conducted. Additionally, the gaps in previous research have been discussed, highlighting areas for further investigation and providing future recommendations. By synthesizing the current knowledge in prostate cancer survival analysis, this review contributes to the understanding of the field and lays the foundation for future advancements.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.