Jiawei Wang, Xiang Li, Xin Guo, Ter-Hoe Loh, Luigi Ranno, Chongyang Liu, Rusli, Hong Wang, Jia Xu Brian Sia
{"title":"用于新兴窄线宽应用的可扩展单微分混合 III-V/Si 激光器。","authors":"Jiawei Wang, Xiang Li, Xin Guo, Ter-Hoe Loh, Luigi Ranno, Chongyang Liu, Rusli, Hong Wang, Jia Xu Brian Sia","doi":"10.1364/OE.529952","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon photonics, compatible with large-scale silicon manufacturing, is a disruptive photonic platform that has indicated significant implications in industry and research areas (e.g., quantum, neuromorphic computing, LiDAR). Cutting-edge applications such as high-capacity coherent optical communication and heterodyne LiDAR have escalated the demand for integrated narrow-linewidth laser sources. To that effect, this work seeks to address this requirement through the development of a high-performance hybrid III-V/silicon laser. The developed integrated laser utilizes a single microring resonator (MRR), demonstrating single-mode operation with a side mode suppression ratio (SMSR) exceeding 45 dB, with laser output power as high as 16.4 mW. Moving away from current hybrid/heterogeneous laser architectures that necessitate multiple complex controls, the developed laser architecture requires only two control parameters. Importantly, this serves to streamline industrial adoption by reducing the complexity involved in characterizing these lasers, at-scale. Through the succinct structure and control framework, a narrow laser linewidth of 2.79 kHz and low relative intensity noise (RIN) of -135 dB/Hz are achieved. Furthermore, optical data transmission at 12.5 Gb/s is demonstrated where a signal-to-noise ratio (SNR) of 10 dB is measured.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26751-26762"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable single-microring hybrid III-V/Si lasers for emerging narrow-linewidth applications.\",\"authors\":\"Jiawei Wang, Xiang Li, Xin Guo, Ter-Hoe Loh, Luigi Ranno, Chongyang Liu, Rusli, Hong Wang, Jia Xu Brian Sia\",\"doi\":\"10.1364/OE.529952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicon photonics, compatible with large-scale silicon manufacturing, is a disruptive photonic platform that has indicated significant implications in industry and research areas (e.g., quantum, neuromorphic computing, LiDAR). Cutting-edge applications such as high-capacity coherent optical communication and heterodyne LiDAR have escalated the demand for integrated narrow-linewidth laser sources. To that effect, this work seeks to address this requirement through the development of a high-performance hybrid III-V/silicon laser. The developed integrated laser utilizes a single microring resonator (MRR), demonstrating single-mode operation with a side mode suppression ratio (SMSR) exceeding 45 dB, with laser output power as high as 16.4 mW. Moving away from current hybrid/heterogeneous laser architectures that necessitate multiple complex controls, the developed laser architecture requires only two control parameters. Importantly, this serves to streamline industrial adoption by reducing the complexity involved in characterizing these lasers, at-scale. Through the succinct structure and control framework, a narrow laser linewidth of 2.79 kHz and low relative intensity noise (RIN) of -135 dB/Hz are achieved. Furthermore, optical data transmission at 12.5 Gb/s is demonstrated where a signal-to-noise ratio (SNR) of 10 dB is measured.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"26751-26762\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.529952\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.529952","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Scalable single-microring hybrid III-V/Si lasers for emerging narrow-linewidth applications.
Silicon photonics, compatible with large-scale silicon manufacturing, is a disruptive photonic platform that has indicated significant implications in industry and research areas (e.g., quantum, neuromorphic computing, LiDAR). Cutting-edge applications such as high-capacity coherent optical communication and heterodyne LiDAR have escalated the demand for integrated narrow-linewidth laser sources. To that effect, this work seeks to address this requirement through the development of a high-performance hybrid III-V/silicon laser. The developed integrated laser utilizes a single microring resonator (MRR), demonstrating single-mode operation with a side mode suppression ratio (SMSR) exceeding 45 dB, with laser output power as high as 16.4 mW. Moving away from current hybrid/heterogeneous laser architectures that necessitate multiple complex controls, the developed laser architecture requires only two control parameters. Importantly, this serves to streamline industrial adoption by reducing the complexity involved in characterizing these lasers, at-scale. Through the succinct structure and control framework, a narrow laser linewidth of 2.79 kHz and low relative intensity noise (RIN) of -135 dB/Hz are achieved. Furthermore, optical data transmission at 12.5 Gb/s is demonstrated where a signal-to-noise ratio (SNR) of 10 dB is measured.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.