Weijing Fan, Yin Qu, Xin Yuan, Hongshuo Shi, Guobin Liu
{"title":"Loureirin B 通过促进 TGFβ/Smad 依赖性巨噬细胞 M2 极化加速糖尿病伤口愈合:通过单细胞 RNA 测序和实验验证的协同分析方法。","authors":"Weijing Fan, Yin Qu, Xin Yuan, Hongshuo Shi, Guobin Liu","doi":"10.1002/ptr.8373","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic wound (DW) represent a significant clinical challenge and often fail to heal effectively. Loureirin B (LB), a flavonoid extracted from dragon's blood, has shown potential by influencing macrophage polarization and promoting wound healing. However, its mechanisms and efficacy in DW remain to be explored. This study employed single-cell RNA sequencing to analyze the classification of cells in diabetic foot ulcers and to identify the related mechanisms influenced by macrophages. Molecular docking was used to predict the interactions of LB with key proteins in the TGFβ/Smad signaling pathway. The effects of LB on macrophage polarization and wound healing were further validated through in vitro and in vivo experiments using a DW model. Single-cell analysis identified specific macrophage subtypes involved in the DW healing process and highlighted the role of the TGFβ/Smad pathway. Molecular docking suggested the potential action within the TGFβ/Smad pathway. In vitro studies showed that under high glucose conditions, LB promoted macrophage polarization from pro-inflammatory M1 to healing-promoting M2 and ECM production in fibroblasts by activating TGF-β/Smad signaling. In vivo, LB treatment enhanced wound healing rates in diabetic mice and promoted macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling. LB regulates macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling to promote DW healing. These findings suggest that LB could be a potential therapeutic agent for improving DW healing, emphasizing the need for further clinical studies to explore its efficacy and mechanisms in human subjects.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loureirin B Accelerates Diabetic Wound Healing by Promoting TGFβ/Smad-Dependent Macrophage M2 Polarization: A Concerted Analytical Approach Through Single-Cell RNA Sequencing and Experimental Verification.\",\"authors\":\"Weijing Fan, Yin Qu, Xin Yuan, Hongshuo Shi, Guobin Liu\",\"doi\":\"10.1002/ptr.8373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic wound (DW) represent a significant clinical challenge and often fail to heal effectively. Loureirin B (LB), a flavonoid extracted from dragon's blood, has shown potential by influencing macrophage polarization and promoting wound healing. However, its mechanisms and efficacy in DW remain to be explored. This study employed single-cell RNA sequencing to analyze the classification of cells in diabetic foot ulcers and to identify the related mechanisms influenced by macrophages. Molecular docking was used to predict the interactions of LB with key proteins in the TGFβ/Smad signaling pathway. The effects of LB on macrophage polarization and wound healing were further validated through in vitro and in vivo experiments using a DW model. Single-cell analysis identified specific macrophage subtypes involved in the DW healing process and highlighted the role of the TGFβ/Smad pathway. Molecular docking suggested the potential action within the TGFβ/Smad pathway. In vitro studies showed that under high glucose conditions, LB promoted macrophage polarization from pro-inflammatory M1 to healing-promoting M2 and ECM production in fibroblasts by activating TGF-β/Smad signaling. In vivo, LB treatment enhanced wound healing rates in diabetic mice and promoted macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling. LB regulates macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling to promote DW healing. These findings suggest that LB could be a potential therapeutic agent for improving DW healing, emphasizing the need for further clinical studies to explore its efficacy and mechanisms in human subjects.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8373\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8373","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Loureirin B Accelerates Diabetic Wound Healing by Promoting TGFβ/Smad-Dependent Macrophage M2 Polarization: A Concerted Analytical Approach Through Single-Cell RNA Sequencing and Experimental Verification.
Diabetic wound (DW) represent a significant clinical challenge and often fail to heal effectively. Loureirin B (LB), a flavonoid extracted from dragon's blood, has shown potential by influencing macrophage polarization and promoting wound healing. However, its mechanisms and efficacy in DW remain to be explored. This study employed single-cell RNA sequencing to analyze the classification of cells in diabetic foot ulcers and to identify the related mechanisms influenced by macrophages. Molecular docking was used to predict the interactions of LB with key proteins in the TGFβ/Smad signaling pathway. The effects of LB on macrophage polarization and wound healing were further validated through in vitro and in vivo experiments using a DW model. Single-cell analysis identified specific macrophage subtypes involved in the DW healing process and highlighted the role of the TGFβ/Smad pathway. Molecular docking suggested the potential action within the TGFβ/Smad pathway. In vitro studies showed that under high glucose conditions, LB promoted macrophage polarization from pro-inflammatory M1 to healing-promoting M2 and ECM production in fibroblasts by activating TGF-β/Smad signaling. In vivo, LB treatment enhanced wound healing rates in diabetic mice and promoted macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling. LB regulates macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling to promote DW healing. These findings suggest that LB could be a potential therapeutic agent for improving DW healing, emphasizing the need for further clinical studies to explore its efficacy and mechanisms in human subjects.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.