验证基于尿液的蛋白质组学检验,预测具有临床意义的前列腺癌:补充 mpMRI 途径。

IF 3.5 4区 医学 Q3 CELL BIOLOGY
Pathobiology Pub Date : 2024-11-11 DOI:10.1159/000542465
Maria Frantzi, Ana C Morillo, Guillermo Lendinez, Ana Blanca, Daniel Lopez Ruiz, Jose Parada, Isabel Heidegger, Zoran Culig, Emmanouil Mavrogeorgis, Antonio Lopez Beltran, Marina Mora-Ortiz, Julia Carrasco-Valiente, Harald Mischak, Rafael A Medina, Pablo Campos Hernandez, Enrique Gómez Gómez
{"title":"验证基于尿液的蛋白质组学检验,预测具有临床意义的前列腺癌:补充 mpMRI 途径。","authors":"Maria Frantzi, Ana C Morillo, Guillermo Lendinez, Ana Blanca, Daniel Lopez Ruiz, Jose Parada, Isabel Heidegger, Zoran Culig, Emmanouil Mavrogeorgis, Antonio Lopez Beltran, Marina Mora-Ortiz, Julia Carrasco-Valiente, Harald Mischak, Rafael A Medina, Pablo Campos Hernandez, Enrique Gómez Gómez","doi":"10.1159/000542465","DOIUrl":null,"url":null,"abstract":"<p><p>INTRODUCTIONː Prostate cancer (PCa) is the most frequently diagnosed cancer among men. A major clinical need is to accurately predict clinically significant PCa (csPCa). A proteomics-based 19-biomarker model (19-BM) was previously developed using capillary electrophoresis-mass spectrometry (CE-MS) and validated in 1000 patients at risk for PCa. This study aimed to validate 19-BM in a multicenter prospective cohort of 101 biopsy-naive patients using current diagnostic pathways. METHODSː Urine samples from 101 patients with PCa were analyzed using CE-MS. All patients underwent MRI using a 3-T system. The 19-BM score was estimated using support vector machine-based software (MosaCluster v1.7.0), employing a previously established cut-off criterion of -0.07. Previously developed diagnostic nomograms were calculated along with MRI. RESULTSː Independent validation of 19-BM yielded a sensitivity of 77% and a specificity of 85% (AUC:0.81). This performance surpassed those of PSA (AUC:0.56) and PSA density (AUC:0.69). For PI-RADS≤ 3 patients, 19-BM showed a sensitivity of 86% and a specificity of 88%. Integrating 19-BM with MRI resulted in significantly better accuracy (AUC:0.90) compared to individual investigations alone (AUC19BM=0.81; p=0.004 and AUCMRI:0.79; p=0.001). Examining the decision curve analysis, 19-BM with MRI surpassed other approaches for the prevailing risk interval from a 30% cut-off. CONCLUSIONSː 19-BM exhibited favorable reproducibility for the prediction of csPCa. In patients with PI-RADS≤3, 19-BM correctly classified 88% of the patients with insignificant PCa at the cost of one missed csPCa patient. Utilizing the 19-BM test could prove valuable in complementing MRI and reducing the need for unnecessary biopsies.</p>","PeriodicalId":19805,"journal":{"name":"Pathobiology","volume":" ","pages":"1-18"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a urine- based proteomics test to predict clinically significant prostate cancer: complementing mpMRI pathway.\",\"authors\":\"Maria Frantzi, Ana C Morillo, Guillermo Lendinez, Ana Blanca, Daniel Lopez Ruiz, Jose Parada, Isabel Heidegger, Zoran Culig, Emmanouil Mavrogeorgis, Antonio Lopez Beltran, Marina Mora-Ortiz, Julia Carrasco-Valiente, Harald Mischak, Rafael A Medina, Pablo Campos Hernandez, Enrique Gómez Gómez\",\"doi\":\"10.1159/000542465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>INTRODUCTIONː Prostate cancer (PCa) is the most frequently diagnosed cancer among men. A major clinical need is to accurately predict clinically significant PCa (csPCa). A proteomics-based 19-biomarker model (19-BM) was previously developed using capillary electrophoresis-mass spectrometry (CE-MS) and validated in 1000 patients at risk for PCa. This study aimed to validate 19-BM in a multicenter prospective cohort of 101 biopsy-naive patients using current diagnostic pathways. METHODSː Urine samples from 101 patients with PCa were analyzed using CE-MS. All patients underwent MRI using a 3-T system. The 19-BM score was estimated using support vector machine-based software (MosaCluster v1.7.0), employing a previously established cut-off criterion of -0.07. Previously developed diagnostic nomograms were calculated along with MRI. RESULTSː Independent validation of 19-BM yielded a sensitivity of 77% and a specificity of 85% (AUC:0.81). This performance surpassed those of PSA (AUC:0.56) and PSA density (AUC:0.69). For PI-RADS≤ 3 patients, 19-BM showed a sensitivity of 86% and a specificity of 88%. Integrating 19-BM with MRI resulted in significantly better accuracy (AUC:0.90) compared to individual investigations alone (AUC19BM=0.81; p=0.004 and AUCMRI:0.79; p=0.001). Examining the decision curve analysis, 19-BM with MRI surpassed other approaches for the prevailing risk interval from a 30% cut-off. CONCLUSIONSː 19-BM exhibited favorable reproducibility for the prediction of csPCa. In patients with PI-RADS≤3, 19-BM correctly classified 88% of the patients with insignificant PCa at the cost of one missed csPCa patient. Utilizing the 19-BM test could prove valuable in complementing MRI and reducing the need for unnecessary biopsies.</p>\",\"PeriodicalId\":19805,\"journal\":{\"name\":\"Pathobiology\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000542465\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542465","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介ː 前列腺癌(PCa)是男性中最常确诊的癌症。准确预测具有临床意义的前列腺癌(csPCa)是一项主要的临床需求。以前曾利用毛细管电泳-质谱法(CE-MS)建立了一个基于蛋白质组学的 19 个生物标志物模型(19-BM),并在 1000 名有 PCa 风险的患者中进行了验证。本研究旨在利用当前的诊断途径,在 101 例无活检患者的多中心前瞻性队列中验证 19-BM。方法ː 使用 CE-MS 分析了 101 名 PCa 患者的尿液样本。所有患者均使用 3-T 系统接受了核磁共振成像检查。使用基于支持向量机的软件(MosaCluster v1.7.0)估算了 19-BM 评分,并采用了之前确定的-0.07 分界标准。先前开发的诊断提名图与核磁共振成像一起计算。结果ː 19-BM 的独立验证结果显示灵敏度为 77%,特异度为 85%(AUC:0.81)。这一结果超过了 PSA(AUC:0.56)和 PSA 密度(AUC:0.69)。对于 PI-RADS≤ 3 的患者,19-BM 的灵敏度为 86%,特异性为 88%。与单独的检查相比,19-BM 与 MRI 相结合的准确性(AUC:0.90)明显更高(AUC19BM=0.81;p=0.004;AUCMRI:0.79;p=0.001)。在决策曲线分析中,19-BM 和 MRI 在 30% 临界值的普遍风险区间内超过了其他方法。结论ː 19-BM 在预测 csPCa 方面表现出良好的可重复性。在 PI-RADS≤3 的患者中,19-BM 能将 88% 的不明显 PCa 患者正确分类,但却漏诊了一名 csPCa 患者。利用 19-BM 检验可以证明它在补充核磁共振成像和减少不必要的活组织检查方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of a urine- based proteomics test to predict clinically significant prostate cancer: complementing mpMRI pathway.

INTRODUCTIONː Prostate cancer (PCa) is the most frequently diagnosed cancer among men. A major clinical need is to accurately predict clinically significant PCa (csPCa). A proteomics-based 19-biomarker model (19-BM) was previously developed using capillary electrophoresis-mass spectrometry (CE-MS) and validated in 1000 patients at risk for PCa. This study aimed to validate 19-BM in a multicenter prospective cohort of 101 biopsy-naive patients using current diagnostic pathways. METHODSː Urine samples from 101 patients with PCa were analyzed using CE-MS. All patients underwent MRI using a 3-T system. The 19-BM score was estimated using support vector machine-based software (MosaCluster v1.7.0), employing a previously established cut-off criterion of -0.07. Previously developed diagnostic nomograms were calculated along with MRI. RESULTSː Independent validation of 19-BM yielded a sensitivity of 77% and a specificity of 85% (AUC:0.81). This performance surpassed those of PSA (AUC:0.56) and PSA density (AUC:0.69). For PI-RADS≤ 3 patients, 19-BM showed a sensitivity of 86% and a specificity of 88%. Integrating 19-BM with MRI resulted in significantly better accuracy (AUC:0.90) compared to individual investigations alone (AUC19BM=0.81; p=0.004 and AUCMRI:0.79; p=0.001). Examining the decision curve analysis, 19-BM with MRI surpassed other approaches for the prevailing risk interval from a 30% cut-off. CONCLUSIONSː 19-BM exhibited favorable reproducibility for the prediction of csPCa. In patients with PI-RADS≤3, 19-BM correctly classified 88% of the patients with insignificant PCa at the cost of one missed csPCa patient. Utilizing the 19-BM test could prove valuable in complementing MRI and reducing the need for unnecessary biopsies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathobiology
Pathobiology 医学-病理学
CiteScore
8.50
自引率
0.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: ''Pathobiology'' offers a valuable platform for the publication of high-quality original research into the mechanisms underlying human disease. Aiming to serve as a bridge between basic biomedical research and clinical medicine, the journal welcomes articles from scientific areas such as pathology, oncology, anatomy, virology, internal medicine, surgery, cell and molecular biology, and immunology. Published bimonthly, ''Pathobiology'' features original research papers and reviews on translational research. The journal offers the possibility to publish proceedings of meetings dedicated to one particular topic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信