基于视觉转换器的新型自动驾驶场景全景深度估计框架。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217013
Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu, Jihao Li
{"title":"基于视觉转换器的新型自动驾驶场景全景深度估计框架。","authors":"Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu, Jihao Li","doi":"10.3390/s24217013","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548541/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Panorama Depth Estimation Framework for Autonomous Driving Scenarios Based on a Vision Transformer.\",\"authors\":\"Yuqi Zhang, Liang Chu, Zixu Wang, He Tong, Jincheng Hu, Jihao Li\",\"doi\":\"10.3390/s24217013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548541/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217013\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217013","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确的全景深度估计结果对于自动驾驶实践中的风险感知至关重要。本文提出了一个创新框架,以解决全景深度估算中的不完美观测和投影融合难题,从而在驾驶场景中准确捕捉周围图像的距离。首先,为缓解自动驾驶场景中全景深度观测不完美的问题,提出了补丁填充方法,该方法基于三维点云提供的稀疏距离数据构建全景深度图。然后,为了解决室外全景图像面临的失真难题,提出了一种图像上下文学习方法 ViT-Fuse,该方法专门针对等角全景视图而设计。实验结果表明,与基本方法相比,所提出的 ViT-Fuse 在驾驶场景中平均减少了 9.15% 的估计误差,并且在深度估计图的边缘细节上表现出更稳健、更平滑的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Panorama Depth Estimation Framework for Autonomous Driving Scenarios Based on a Vision Transformer.

An accurate panorama depth estimation result is crucial to risk perception in autonomous driving practice. In this paper, an innovative framework is presented to address the challenges of imperfect observation and projection fusion in panorama depth estimation, enabling the accurate capture of distances from surrounding images in driving scenarios. First, the Patch Filling method is proposed to alleviate the imperfect observation of panoramic depth in autonomous driving scenarios, which constructs a panoramic depth map based on the sparse distance data provided by the 3D point cloud. Then, in order to tackle the distortion challenge faced by outdoor panoramic images, a method for image context learning, ViT-Fuse, is proposed and specifically designed for equirectangular panoramic views. The experimental results show that the proposed ViT-Fuse reduces the estimation error by 9.15% on average in driving scenarios compared with the basic method and exhibits more robust and smoother results on the edge details of the depth estimation maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信