Yunseok Jang, Seung-Hyun Lee, Youn-Ki Lee, Inyoung Kim, Taik-Min Lee, Sin Kwon, Boseok Kang
{"title":"通过控制流变特性制造高灵敏度多孔聚二甲基硅氧烷压力传感器","authors":"Yunseok Jang, Seung-Hyun Lee, Youn-Ki Lee, Inyoung Kim, Taik-Min Lee, Sin Kwon, Boseok Kang","doi":"10.3390/polym16213075","DOIUrl":null,"url":null,"abstract":"<p><p>In order to enhance the sensitivity of elastomers, pores were integrated into their structure. These pores facilitate the adjustment of thickness in response to external pressure variations, thereby improving the sensitivity of pressure sensors. Pores were introduced by emulsifying immiscible polydimethylsiloxane (PDMS) and water with a surfactant. By controlling the water content in the PDMS and water emulsion, we controlled the size, density, uniformity, and spatial distribution (2D or 3D) of the pores within the PDMS matrix. The presence of these pores significantly improved the sensitivity of PDMS under low external pressure conditions compared to high pressures. Specifically, porous PDMS exhibited approximately 10-times greater sensitivity under low-pressure conditions than non-porous PDMS. The effectiveness of porous PDMS was demonstrated through dynamic loading and unloading detection of a small Lego toy and monitoring of human heartbeats. These results highlight the efficacy of our pressure sensor based on porous PDMS, which is fabricated through a simple and cost-effective process using a PDMS and water emulsion. This approach is highly suitable for developing the ability to detect applied pressures or contact forces.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548559/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Highly Sensitive Porous Polydimethylsiloxane Pressure Sensor Through Control of Rheological Properties.\",\"authors\":\"Yunseok Jang, Seung-Hyun Lee, Youn-Ki Lee, Inyoung Kim, Taik-Min Lee, Sin Kwon, Boseok Kang\",\"doi\":\"10.3390/polym16213075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to enhance the sensitivity of elastomers, pores were integrated into their structure. These pores facilitate the adjustment of thickness in response to external pressure variations, thereby improving the sensitivity of pressure sensors. Pores were introduced by emulsifying immiscible polydimethylsiloxane (PDMS) and water with a surfactant. By controlling the water content in the PDMS and water emulsion, we controlled the size, density, uniformity, and spatial distribution (2D or 3D) of the pores within the PDMS matrix. The presence of these pores significantly improved the sensitivity of PDMS under low external pressure conditions compared to high pressures. Specifically, porous PDMS exhibited approximately 10-times greater sensitivity under low-pressure conditions than non-porous PDMS. The effectiveness of porous PDMS was demonstrated through dynamic loading and unloading detection of a small Lego toy and monitoring of human heartbeats. These results highlight the efficacy of our pressure sensor based on porous PDMS, which is fabricated through a simple and cost-effective process using a PDMS and water emulsion. This approach is highly suitable for developing the ability to detect applied pressures or contact forces.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Fabrication of Highly Sensitive Porous Polydimethylsiloxane Pressure Sensor Through Control of Rheological Properties.
In order to enhance the sensitivity of elastomers, pores were integrated into their structure. These pores facilitate the adjustment of thickness in response to external pressure variations, thereby improving the sensitivity of pressure sensors. Pores were introduced by emulsifying immiscible polydimethylsiloxane (PDMS) and water with a surfactant. By controlling the water content in the PDMS and water emulsion, we controlled the size, density, uniformity, and spatial distribution (2D or 3D) of the pores within the PDMS matrix. The presence of these pores significantly improved the sensitivity of PDMS under low external pressure conditions compared to high pressures. Specifically, porous PDMS exhibited approximately 10-times greater sensitivity under low-pressure conditions than non-porous PDMS. The effectiveness of porous PDMS was demonstrated through dynamic loading and unloading detection of a small Lego toy and monitoring of human heartbeats. These results highlight the efficacy of our pressure sensor based on porous PDMS, which is fabricated through a simple and cost-effective process using a PDMS and water emulsion. This approach is highly suitable for developing the ability to detect applied pressures or contact forces.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.