{"title":"利用时间到事件模型中的免疫相关数据提高疫苗疗效评估的精确度。","authors":"Julie Dudášová, Zdeněk Valenta, Jeffrey R Sachs","doi":"10.1038/s41541-024-00937-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"214"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554669/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models.\",\"authors\":\"Julie Dudášová, Zdeněk Valenta, Jeffrey R Sachs\",\"doi\":\"10.1038/s41541-024-00937-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":\"9 1\",\"pages\":\"214\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-00937-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-00937-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models.
Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.