Gizeaddis Lamesgin Simegn, Phillip Zhe Sun, Jinyuan Zhou, Mina Kim, Ravinder Reddy, Zhongliang Zu, Moritz Zaiss, Nirbhay Narayan Yadav, Richard A E Edden, Peter C M van Zijl, Linda Knutsson
{"title":"化学交换饱和传递(CEST)磁共振成像的运动和磁场不均匀性校正技术:当代综述。","authors":"Gizeaddis Lamesgin Simegn, Phillip Zhe Sun, Jinyuan Zhou, Mina Kim, Ravinder Reddy, Zhongliang Zu, Moritz Zaiss, Nirbhay Narayan Yadav, Richard A E Edden, Peter C M van Zijl, Linda Knutsson","doi":"10.1002/nbm.5294","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B<sub>0</sub> and B<sub>1</sub> <sup>+</sup>) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5294"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606773/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review.\",\"authors\":\"Gizeaddis Lamesgin Simegn, Phillip Zhe Sun, Jinyuan Zhou, Mina Kim, Ravinder Reddy, Zhongliang Zu, Moritz Zaiss, Nirbhay Narayan Yadav, Richard A E Edden, Peter C M van Zijl, Linda Knutsson\",\"doi\":\"10.1002/nbm.5294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B<sub>0</sub> and B<sub>1</sub> <sup>+</sup>) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5294\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606773/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5294\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
化学交换饱和转移(CEST)磁共振成像(MRI)已成为一种强大的成像技术,对组织分子成分、pH 值和原位代谢过程非常敏感。CEST 磁共振成像能独特地探测组织内水和特定分子之间质子的物理交换,为了解标准磁共振成像看不到的生理现象提供了一个窗口。然而,由于 CEST 化合物的浓度非常低(在毫摩尔范围内),所测得的效果通常只有水信号的百分之几。因此,为了充分释放 CEST MRI 的潜力,必须解决一些关键难题,包括纠正运动伪影和磁场(B0 和 B1 +)不均匀性。运动,无论是患者的移动还是固有的生理脉动,都会扭曲 CEST 信号,阻碍精确量化。扫描仪硬件缺陷导致的 B0 和 B1 + 不均匀性会在信号强度中引入虚假变化,从而使数据解读更加复杂。如果不对这些干扰因素进行适当的校正,CEST MRI 的可靠分析和临床应用仍然具有挑战性。运动校正方法旨在补偿患者在图像采集期间(前瞻性)或采集之后(回顾性)的运动,从而减少伪影并保持数据质量。同样,B0 和 B1 + 不均匀性校正技术可提高 CEST MRI 的空间和频谱精度。本文旨在全面回顾目前 CEST MRI 中运动和磁场不均匀校正方法的现状。所讨论的方法一般适用于饱和转移(ST)磁共振成像,包括半固体磁化转移对比(MTC)和中继核奥豪斯增强(rNOE)研究。
Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review.
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1+) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1+ inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1+ inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.