Yue-Wei Xu , Chang-Heng Yao , Xiao-Ming Gao , Li Wang , Meng-Xiang Zhang , Xiao-Dan Yang , Jing Li , Wen-Ling Dai , Man-Qin Yang , Ming Cai
{"title":"BAK通过激活AMPK/Nrf2来抑制TXNIP/NLRP3/caspase-1轴,从而改善脑梗塞/缺血再灌注损伤。","authors":"Yue-Wei Xu , Chang-Heng Yao , Xiao-Ming Gao , Li Wang , Meng-Xiang Zhang , Xiao-Dan Yang , Jing Li , Wen-Ling Dai , Man-Qin Yang , Ming Cai","doi":"10.1016/j.neulet.2024.138037","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of <em>Psoralea corylifolia</em> Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear.</div></div><div><h3>Methods</h3><div>Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells <em>in vitro</em>. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence.</div></div><div><h3>Results</h3><div>Our study indicated that BAK protected ischemia–reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK’ the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of <em>Psoralea corylifolia</em> Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"844 ","pages":"Article 138037"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAK ameliorated cerebral infarction/ischemia–reperfusion injury by activating AMPK/Nrf2 to inhibit TXNIP/NLRP3/caspase-1 axis\",\"authors\":\"Yue-Wei Xu , Chang-Heng Yao , Xiao-Ming Gao , Li Wang , Meng-Xiang Zhang , Xiao-Dan Yang , Jing Li , Wen-Ling Dai , Man-Qin Yang , Ming Cai\",\"doi\":\"10.1016/j.neulet.2024.138037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of <em>Psoralea corylifolia</em> Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear.</div></div><div><h3>Methods</h3><div>Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells <em>in vitro</em>. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence.</div></div><div><h3>Results</h3><div>Our study indicated that BAK protected ischemia–reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK’ the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of <em>Psoralea corylifolia</em> Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"844 \",\"pages\":\"Article 138037\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024004166\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004166","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
BAK ameliorated cerebral infarction/ischemia–reperfusion injury by activating AMPK/Nrf2 to inhibit TXNIP/NLRP3/caspase-1 axis
Background
Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of Psoralea corylifolia Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear.
Methods
Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells in vitro. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence.
Results
Our study indicated that BAK protected ischemia–reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK’ the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of Psoralea corylifolia Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.