Biafra Ahanonu, Andrew Crowther, Artur Kania, Mariela Rosa-Casillas, Allan I. Basbaum
{"title":"清醒行为小鼠脊髓的长期光学成像。","authors":"Biafra Ahanonu, Andrew Crowther, Artur Kania, Mariela Rosa-Casillas, Allan I. Basbaum","doi":"10.1038/s41592-024-02476-3","DOIUrl":null,"url":null,"abstract":"Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain. Long-term imaging in the spinal cord is achieved by placing a fluoropolymer membrane on the spinal cord, which reduces fibrosis. This approach, combined with deep-learning-based motion correction, enables months-long imaging of the same neurons.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2363-2375"},"PeriodicalIF":36.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term optical imaging of the spinal cord in awake behaving mice\",\"authors\":\"Biafra Ahanonu, Andrew Crowther, Artur Kania, Mariela Rosa-Casillas, Allan I. Basbaum\",\"doi\":\"10.1038/s41592-024-02476-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain. Long-term imaging in the spinal cord is achieved by placing a fluoropolymer membrane on the spinal cord, which reduces fibrosis. This approach, combined with deep-learning-based motion correction, enables months-long imaging of the same neurons.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"21 12\",\"pages\":\"2363-2375\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02476-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02476-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Long-term optical imaging of the spinal cord in awake behaving mice
Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain. Long-term imaging in the spinal cord is achieved by placing a fluoropolymer membrane on the spinal cord, which reduces fibrosis. This approach, combined with deep-learning-based motion correction, enables months-long imaging of the same neurons.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.