用 AlZn2O4 和 ZnP2 抑制氧化锌中的热导率以实现热电应用。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheng-Lun Hsin, Yu-Ting Liu, Yue-Yun Tsai
{"title":"用 AlZn2O4 和 ZnP2 抑制氧化锌中的热导率以实现热电应用。","authors":"Cheng-Lun Hsin, Yu-Ting Liu, Yue-Yun Tsai","doi":"10.1088/1361-6528/ad9158","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, intrinsic ZnO powder was sintered and intercalated with particles. The resulting powder, along with a commercial p-type product, was consolidated into bulk materials, and their thermal conductivity was measured across a temperature range of 350 K-700 K. The thermal conductivity of the commercial p-type ZnO was found to be lower than that of intrinsic ZnO, attributed to controlled doping. Notably, our demonstration illustrated that the thermal conductivity can be reduced by a factor of 5-10 in the presence of AlZn<sub>2</sub>O<sub>4</sub>and ZnP<sub>2</sub>precipitates. This methodology presents a feasible approach for the future design of ZnO-based thermoelectric materials, particularly for thermal heat scavenging applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal conductivity suppression in ZnO with AlZn<sub>2</sub>O<sub>4</sub>and ZnP<sub>2</sub>for thermoelectric applications.\",\"authors\":\"Cheng-Lun Hsin, Yu-Ting Liu, Yue-Yun Tsai\",\"doi\":\"10.1088/1361-6528/ad9158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, intrinsic ZnO powder was sintered and intercalated with particles. The resulting powder, along with a commercial p-type product, was consolidated into bulk materials, and their thermal conductivity was measured across a temperature range of 350 K-700 K. The thermal conductivity of the commercial p-type ZnO was found to be lower than that of intrinsic ZnO, attributed to controlled doping. Notably, our demonstration illustrated that the thermal conductivity can be reduced by a factor of 5-10 in the presence of AlZn<sub>2</sub>O<sub>4</sub>and ZnP<sub>2</sub>precipitates. This methodology presents a feasible approach for the future design of ZnO-based thermoelectric materials, particularly for thermal heat scavenging applications.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad9158\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9158","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,烧结了本征氧化锌粉末并在其中夹杂了颗粒。研究发现,由于受控掺杂,商用 p 型氧化锌的热导率低于本征氧化锌。值得注意的是,我们的研究表明,在 AlZn2O4 和 ZnP2 沉淀存在的情况下,热导率可降低 5-10 倍。这种方法为未来设计基于氧化锌的热电材料,特别是热清除应用,提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications.

In this study, intrinsic ZnO powder was sintered and intercalated with particles. The resulting powder, along with a commercial p-type product, was consolidated into bulk materials, and their thermal conductivity was measured across a temperature range of 350 K-700 K. The thermal conductivity of the commercial p-type ZnO was found to be lower than that of intrinsic ZnO, attributed to controlled doping. Notably, our demonstration illustrated that the thermal conductivity can be reduced by a factor of 5-10 in the presence of AlZn2O4and ZnP2precipitates. This methodology presents a feasible approach for the future design of ZnO-based thermoelectric materials, particularly for thermal heat scavenging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信