Hao Tian, Yan Zhang, Wei Li, GenTan Xie, JunJing Wu, Jing Liu
{"title":"黄芪皂苷 IV 通过 miR-362-3p 靶向 RUNX1 抑制 PM2.5 诱导的肺损伤和纤维化","authors":"Hao Tian, Yan Zhang, Wei Li, GenTan Xie, JunJing Wu, Jing Liu","doi":"10.1007/s12033-024-01320-5","DOIUrl":null,"url":null,"abstract":"<p><p>To discover the molecular mechanism of Astragaloside IV (AS IV) in PM2.5-induced lung injury and pulmonary fibrosis (PF). A lung injury rat model was induced by PM2.5 and injected intraperitoneally with AS IV. Lungs were harvested to evaluate lung tissue injury and apoptosis. Rat alveolar epithelial cells L2 were exposed to PM2.5 and treated with AS IV. After cellular transfection, cell proliferation, LDH production, and apoptosis were measured. In both models, inflammatory factors and fibrotic indices were measured by ELISA and Western blot. miR-362-3p and RUNX1 interplay was explored and confirmed. Administration of AS IV attenuated PM2.5-induced lung tissue injury, inflammation, apoptosis, and PF in rats. AS IV enhanced proliferation and reduced LDH release, apoptosis, inflammation, and PF in PM2.5-treated L2 cells. MiR-362-3p upregulation improved PM2.5-induced L2 cell injury. AS IV improved PM2.5-induced lung injury by upregulating miR-362-3p. miR-362-3p had an inhibition effect on RUNX1 expression. RUNX1 upregulation weakened the therapeutic effect of AS IV on PM2.5-induced alveolar epithelial cell injury. AS IV inhibits lung injury and PF induced by PM2.5 by targeting RUNX1 through upregulation of miR-362-3p.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astragaloside IV Inhibits Lung Injury and Fibrosis Induced by PM2.5 by Targeting RUNX1 Through miR-362-3p.\",\"authors\":\"Hao Tian, Yan Zhang, Wei Li, GenTan Xie, JunJing Wu, Jing Liu\",\"doi\":\"10.1007/s12033-024-01320-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To discover the molecular mechanism of Astragaloside IV (AS IV) in PM2.5-induced lung injury and pulmonary fibrosis (PF). A lung injury rat model was induced by PM2.5 and injected intraperitoneally with AS IV. Lungs were harvested to evaluate lung tissue injury and apoptosis. Rat alveolar epithelial cells L2 were exposed to PM2.5 and treated with AS IV. After cellular transfection, cell proliferation, LDH production, and apoptosis were measured. In both models, inflammatory factors and fibrotic indices were measured by ELISA and Western blot. miR-362-3p and RUNX1 interplay was explored and confirmed. Administration of AS IV attenuated PM2.5-induced lung tissue injury, inflammation, apoptosis, and PF in rats. AS IV enhanced proliferation and reduced LDH release, apoptosis, inflammation, and PF in PM2.5-treated L2 cells. MiR-362-3p upregulation improved PM2.5-induced L2 cell injury. AS IV improved PM2.5-induced lung injury by upregulating miR-362-3p. miR-362-3p had an inhibition effect on RUNX1 expression. RUNX1 upregulation weakened the therapeutic effect of AS IV on PM2.5-induced alveolar epithelial cell injury. AS IV inhibits lung injury and PF induced by PM2.5 by targeting RUNX1 through upregulation of miR-362-3p.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01320-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01320-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Astragaloside IV Inhibits Lung Injury and Fibrosis Induced by PM2.5 by Targeting RUNX1 Through miR-362-3p.
To discover the molecular mechanism of Astragaloside IV (AS IV) in PM2.5-induced lung injury and pulmonary fibrosis (PF). A lung injury rat model was induced by PM2.5 and injected intraperitoneally with AS IV. Lungs were harvested to evaluate lung tissue injury and apoptosis. Rat alveolar epithelial cells L2 were exposed to PM2.5 and treated with AS IV. After cellular transfection, cell proliferation, LDH production, and apoptosis were measured. In both models, inflammatory factors and fibrotic indices were measured by ELISA and Western blot. miR-362-3p and RUNX1 interplay was explored and confirmed. Administration of AS IV attenuated PM2.5-induced lung tissue injury, inflammation, apoptosis, and PF in rats. AS IV enhanced proliferation and reduced LDH release, apoptosis, inflammation, and PF in PM2.5-treated L2 cells. MiR-362-3p upregulation improved PM2.5-induced L2 cell injury. AS IV improved PM2.5-induced lung injury by upregulating miR-362-3p. miR-362-3p had an inhibition effect on RUNX1 expression. RUNX1 upregulation weakened the therapeutic effect of AS IV on PM2.5-induced alveolar epithelial cell injury. AS IV inhibits lung injury and PF induced by PM2.5 by targeting RUNX1 through upregulation of miR-362-3p.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.