{"title":"钛基碳纤/环氧树脂层压板的低速冲击行为","authors":"Jing Sun, Weilin Chen, Hongjie Luo, Xingfang Xie, Jingzhou Zhang, Chao Ding","doi":"10.3390/ma17215380","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the low-velocity impact response of titanium-based carbon-fibre/epoxy laminate (TI-CF FML). A comprehensive experimental study was carried out with impact energies ranging from 16.9 J to 91.9 J. Finite element analysis, performed using ABAQUS, was employed to elucidate the failure mechanisms of the laminate. Three distinct damage modes were identified based on the impact energy levels. The energy absorption characteristics of the TI-CF FML were analysed, revealing that maximum energy absorption is achieved and remains constant after penetration occurs. The relationship between impact force and displacement was also explored, showing that the laminate can withstand a peak force of 13.1 kN. The research on the impact resistance, damage mechanisms and energy absorption capacity of TI-CF FML provides an in-depth understanding of the impact behaviour of the laminate and its suitability for various industrial applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-Velocity Impact Behaviour of Titanium-Based Carbon-Fibre/Epoxy Laminate.\",\"authors\":\"Jing Sun, Weilin Chen, Hongjie Luo, Xingfang Xie, Jingzhou Zhang, Chao Ding\",\"doi\":\"10.3390/ma17215380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the low-velocity impact response of titanium-based carbon-fibre/epoxy laminate (TI-CF FML). A comprehensive experimental study was carried out with impact energies ranging from 16.9 J to 91.9 J. Finite element analysis, performed using ABAQUS, was employed to elucidate the failure mechanisms of the laminate. Three distinct damage modes were identified based on the impact energy levels. The energy absorption characteristics of the TI-CF FML were analysed, revealing that maximum energy absorption is achieved and remains constant after penetration occurs. The relationship between impact force and displacement was also explored, showing that the laminate can withstand a peak force of 13.1 kN. The research on the impact resistance, damage mechanisms and energy absorption capacity of TI-CF FML provides an in-depth understanding of the impact behaviour of the laminate and its suitability for various industrial applications.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215380\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215380","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Low-Velocity Impact Behaviour of Titanium-Based Carbon-Fibre/Epoxy Laminate.
This study investigated the low-velocity impact response of titanium-based carbon-fibre/epoxy laminate (TI-CF FML). A comprehensive experimental study was carried out with impact energies ranging from 16.9 J to 91.9 J. Finite element analysis, performed using ABAQUS, was employed to elucidate the failure mechanisms of the laminate. Three distinct damage modes were identified based on the impact energy levels. The energy absorption characteristics of the TI-CF FML were analysed, revealing that maximum energy absorption is achieved and remains constant after penetration occurs. The relationship between impact force and displacement was also explored, showing that the laminate can withstand a peak force of 13.1 kN. The research on the impact resistance, damage mechanisms and energy absorption capacity of TI-CF FML provides an in-depth understanding of the impact behaviour of the laminate and its suitability for various industrial applications.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.