具有不连续沉淀的铜-镍-硅合金的抗软化行为及其机理研究

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-10-31 DOI:10.3390/ma17215323
Yicheng Cao, Wei Luo, Zhen Yang, Haofeng Xie, Wenjing Zhang, Zengde Li, Lijun Peng, Yunqing Zhu, Jun Liu
{"title":"具有不连续沉淀的铜-镍-硅合金的抗软化行为及其机理研究","authors":"Yicheng Cao, Wei Luo, Zhen Yang, Haofeng Xie, Wenjing Zhang, Zengde Li, Lijun Peng, Yunqing Zhu, Jun Liu","doi":"10.3390/ma17215323","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Softening Resistance Behavior and Its Mechanism in Cu-Ni-Si Alloys with Discontinuous Precipitates.\",\"authors\":\"Yicheng Cao, Wei Luo, Zhen Yang, Haofeng Xie, Wenjing Zhang, Zengde Li, Lijun Peng, Yunqing Zhu, Jun Liu\",\"doi\":\"10.3390/ma17215323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215323\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215323","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究对含有连续析出物(CP)和不连续析出物(DP)的铜-镍-硅合金进行了等温退火实验,以研究不同类型的析出物相对退火过程中微观结构演变和软化温度的影响,并分析软化机制的差异。实验结果表明,CP 合金在 75% 冷变形条件下的软化温度为 505 ℃。而 DP 合金在 75% 和 97.5% 冷变形后的软化温度分别为 575 ℃ 和 515 ℃。这表明 DP 合金的抗软化性能明显优于 CP 合金,这归因于两种合金不同的软化机制。在 CP 合金中,软化主要受析出相粗化、再结晶发生和位错密度降低等因素的影响。在 DP 合金中,DP 相的球化现象更为明显,其独特的微观结构对位错和晶界运动产生了更强的阻碍作用。这种阻碍作用降低了再结晶的程度,使位错密度的下降幅度较小。总之,DP 合金因其独特的微观结构和软化机制而具有更好的抗软化性能,可为高温应用提供更高的耐久性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the Softening Resistance Behavior and Its Mechanism in Cu-Ni-Si Alloys with Discontinuous Precipitates.

In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信