用于增强免疫测定的缺陷不敏感圆柱表面晶格共振阵列及其批量复制。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou
{"title":"用于增强免疫测定的缺陷不敏感圆柱表面晶格共振阵列及其批量复制。","authors":"Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou","doi":"10.1038/s41378-024-00793-3","DOIUrl":null,"url":null,"abstract":"<p><p>Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"168"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay.\",\"authors\":\"Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou\",\"doi\":\"10.1038/s41378-024-00793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"168\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00793-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00793-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

表面晶格共振(SLR)已被证明可提高灵敏度并减小等离子共振的半最大全宽(FWHM)。然而,由于结构缺陷灵敏度高和制造成本等限制,它们在免疫测定中的广泛应用受到了阻碍。在这里,我们设计了一种新型的三层圆柱形 SLR 阵列,它对结构缺陷具有很高的耐受性,这将有助于直接制造。通过整合金属蒸发和纳米压印光刻技术,我们展示了高质量的 SLR 阵列复制。理论模拟表明,这些阵列的共振点对各种结构缺陷并不敏感。实验结果表明,这些阵列的 FWHM 可以低至 5.1 nm,同时保持稳健的共振特性。此外,我们还证明了 SLR 阵列的高光谱灵敏度,可检测浓度低至 609 pg/mL 的免疫球蛋白 G (IgG)。这些发现强调了对缺陷不敏感的 SLR 阵列作为一种性能卓越、高度可扩展的免疫测定平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay.

Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信