进一步了解多柔比星对乳腺癌的治疗效果。

IF 2.8 4区 医学 Q2 ONCOLOGY
Ziye Zhuang, Rui Wang, Hao Chi
{"title":"进一步了解多柔比星对乳腺癌的治疗效果。","authors":"Ziye Zhuang, Rui Wang, Hao Chi","doi":"10.1007/s12032-024-02565-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this letter, we extend our commendation to the authors of the study titled \"Doxorubicin downregulates cell cycle regulatory hub genes in breast cancer cells\" for their insightful work. However, we also propose several areas for potential enhancement. We identify the study's limitations, such as a focus on the effects of doxorubicin treatment over a limited 48-h period, potential biases due to algorithmic and database constraints, and the absence of in vivo model validation. We advocate for the application of machine learning to identify biomarkers, the use of molecular docking for target selection, and the incorporation of animal models and patient-derived samples to bolster the study's clinical significance. Our recommendations are intended to refine the research and deepen the comprehension of doxorubicin's therapeutic role in the treatment of breast cancer.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 1","pages":"3"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the understanding of doxorubicin's therapeutic impact in breast cancer.\",\"authors\":\"Ziye Zhuang, Rui Wang, Hao Chi\",\"doi\":\"10.1007/s12032-024-02565-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this letter, we extend our commendation to the authors of the study titled \\\"Doxorubicin downregulates cell cycle regulatory hub genes in breast cancer cells\\\" for their insightful work. However, we also propose several areas for potential enhancement. We identify the study's limitations, such as a focus on the effects of doxorubicin treatment over a limited 48-h period, potential biases due to algorithmic and database constraints, and the absence of in vivo model validation. We advocate for the application of machine learning to identify biomarkers, the use of molecular docking for target selection, and the incorporation of animal models and patient-derived samples to bolster the study's clinical significance. Our recommendations are intended to refine the research and deepen the comprehension of doxorubicin's therapeutic role in the treatment of breast cancer.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":\"42 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-024-02565-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02565-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们对题为 "多柔比星下调乳腺癌细胞中的细胞周期调控中枢基因 "的研究的作者所做的富有洞察力的工作表示赞赏。不过,我们也提出了几个可能需要改进的方面。我们指出了该研究的局限性,例如只关注多柔比星治疗在有限的 48 小时内的影响,算法和数据库限制可能导致的偏差,以及缺乏体内模型验证。我们主张应用机器学习来识别生物标志物,使用分子对接来选择靶点,并结合动物模型和患者样本来增强研究的临床意义。我们的建议旨在完善研究,加深对多柔比星在乳腺癌治疗中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the understanding of doxorubicin's therapeutic impact in breast cancer.

In this letter, we extend our commendation to the authors of the study titled "Doxorubicin downregulates cell cycle regulatory hub genes in breast cancer cells" for their insightful work. However, we also propose several areas for potential enhancement. We identify the study's limitations, such as a focus on the effects of doxorubicin treatment over a limited 48-h period, potential biases due to algorithmic and database constraints, and the absence of in vivo model validation. We advocate for the application of machine learning to identify biomarkers, the use of molecular docking for target selection, and the incorporation of animal models and patient-derived samples to bolster the study's clinical significance. Our recommendations are intended to refine the research and deepen the comprehension of doxorubicin's therapeutic role in the treatment of breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信