电介质的超短脉冲激光加热:半经典分析模型

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-11-02 DOI:10.3390/ma17215366
Liviu Badea, Liviu Duta, Cristian N Mihailescu, Mihai Oane, Alexandra M I Trefilov, Andrei Popescu, Claudiu Hapenciuc, Muhammad Arif Mahmood, Dorina Ticos, Natalia Mihailescu, Carmen Ristoscu, Sinziana A Anghel, Ion N Mihailescu
{"title":"电介质的超短脉冲激光加热:半经典分析模型","authors":"Liviu Badea, Liviu Duta, Cristian N Mihailescu, Mihai Oane, Alexandra M I Trefilov, Andrei Popescu, Claudiu Hapenciuc, Muhammad Arif Mahmood, Dorina Ticos, Natalia Mihailescu, Carmen Ristoscu, Sinziana A Anghel, Ion N Mihailescu","doi":"10.3390/ma17215366","DOIUrl":null,"url":null,"abstract":"<p><p>Femtosecond laser pulses are currently regarded as an emerging and promising tool for processing wide bandgap dielectric materials across a variety of high-end applications, although the associated physical phenomena are not yet fully understood. To address these challenges, we propose an original, fully analytical model combined with Two Temperatures Model (TTM) formalism. The model is applied to describe the interaction of fs laser pulses with a typical dielectric target (e.g., Sapphire). It describes the heating of dielectrics, such as Sapphire, under irradiation by fs laser pulses in the range of (10<sup>12</sup>-10<sup>14</sup>) W/cm<sup>2</sup>. The proposed formalism was implemented to calculate the free electron density, while numerical simulations of temperature field evolution within the dielectrics were conducted using the TTM. Mathematical models have rarely been used to solve the TTM in the context of laser-dielectric interactions. Unlike the TTM applied to metals, which requires solving two heat equations, for dielectrics the free electron density must first be determined. We propose an analytical model to solve the TTM equations using this parameter. A new simulation model was developed, combining the equations for non-equilibrium electron density determination with the TTM equations. Our analyses revealed the non-linear nature of the physical phenomena involved and the inapplicability of the Beer-Lambert law for fs laser pulse interactions with dielectric targets at incident laser fluences ranging from 6 to 20 J/cm<sup>2</sup>.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model.\",\"authors\":\"Liviu Badea, Liviu Duta, Cristian N Mihailescu, Mihai Oane, Alexandra M I Trefilov, Andrei Popescu, Claudiu Hapenciuc, Muhammad Arif Mahmood, Dorina Ticos, Natalia Mihailescu, Carmen Ristoscu, Sinziana A Anghel, Ion N Mihailescu\",\"doi\":\"10.3390/ma17215366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Femtosecond laser pulses are currently regarded as an emerging and promising tool for processing wide bandgap dielectric materials across a variety of high-end applications, although the associated physical phenomena are not yet fully understood. To address these challenges, we propose an original, fully analytical model combined with Two Temperatures Model (TTM) formalism. The model is applied to describe the interaction of fs laser pulses with a typical dielectric target (e.g., Sapphire). It describes the heating of dielectrics, such as Sapphire, under irradiation by fs laser pulses in the range of (10<sup>12</sup>-10<sup>14</sup>) W/cm<sup>2</sup>. The proposed formalism was implemented to calculate the free electron density, while numerical simulations of temperature field evolution within the dielectrics were conducted using the TTM. Mathematical models have rarely been used to solve the TTM in the context of laser-dielectric interactions. Unlike the TTM applied to metals, which requires solving two heat equations, for dielectrics the free electron density must first be determined. We propose an analytical model to solve the TTM equations using this parameter. A new simulation model was developed, combining the equations for non-equilibrium electron density determination with the TTM equations. Our analyses revealed the non-linear nature of the physical phenomena involved and the inapplicability of the Beer-Lambert law for fs laser pulse interactions with dielectric targets at incident laser fluences ranging from 6 to 20 J/cm<sup>2</sup>.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215366\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

飞秒激光脉冲目前被认为是加工宽带隙电介质材料的一种新兴而有前途的工具,可用于各种高端应用领域,但相关的物理现象尚未被完全理解。为了应对这些挑战,我们提出了一个结合双温度模型(TTM)形式主义的原创全分析模型。该模型用于描述 fs 激光脉冲与典型电介质目标(如蓝宝石)之间的相互作用。它描述了在 (1012-1014) W/cm2 范围内的 fs 激光脉冲照射下电介质(如蓝宝石)的加热过程。所提出的形式主义用于计算自由电子密度,同时使用 TTM 对电介质内部的温度场演变进行了数值模拟。在激光与电介质相互作用的背景下,很少使用数学模型来求解 TTM。应用于金属的 TTM 需要求解两个热方程,而应用于电介质的 TTM 则不同,必须首先确定自由电子密度。我们提出了一个分析模型,利用该参数求解 TTM 方程。结合非平衡电子密度确定方程和 TTM 方程,我们开发了一个新的模拟模型。我们的分析揭示了相关物理现象的非线性性质,以及比尔-兰伯特定律不适用于入射激光流从 6 到 20 J/cm2 的瞬时激光脉冲与电介质目标的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model.

Femtosecond laser pulses are currently regarded as an emerging and promising tool for processing wide bandgap dielectric materials across a variety of high-end applications, although the associated physical phenomena are not yet fully understood. To address these challenges, we propose an original, fully analytical model combined with Two Temperatures Model (TTM) formalism. The model is applied to describe the interaction of fs laser pulses with a typical dielectric target (e.g., Sapphire). It describes the heating of dielectrics, such as Sapphire, under irradiation by fs laser pulses in the range of (1012-1014) W/cm2. The proposed formalism was implemented to calculate the free electron density, while numerical simulations of temperature field evolution within the dielectrics were conducted using the TTM. Mathematical models have rarely been used to solve the TTM in the context of laser-dielectric interactions. Unlike the TTM applied to metals, which requires solving two heat equations, for dielectrics the free electron density must first be determined. We propose an analytical model to solve the TTM equations using this parameter. A new simulation model was developed, combining the equations for non-equilibrium electron density determination with the TTM equations. Our analyses revealed the non-linear nature of the physical phenomena involved and the inapplicability of the Beer-Lambert law for fs laser pulse interactions with dielectric targets at incident laser fluences ranging from 6 to 20 J/cm2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信