学习诱导的运动皮层抑制性突触重塑

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2024-11-01 Epub Date: 2024-11-13 DOI:10.1098/rsob.240109
Nishita Bhembre, Annalisa Paolino, Sooraj S Das, Sumasri Guntupalli, Laura R Fenlon, Victor Anggono
{"title":"学习诱导的运动皮层抑制性突触重塑","authors":"Nishita Bhembre, Annalisa Paolino, Sooraj S Das, Sumasri Guntupalli, Laura R Fenlon, Victor Anggono","doi":"10.1098/rsob.240109","DOIUrl":null,"url":null,"abstract":"<p><p>Robust structural and functional plasticity occurs at excitatory synapses in the motor cortex in response to learning. It is well established that local spinogenesis and the subsequent maintenance of newly formed spines are crucial for motor learning. However, despite local synaptic inhibition being essential for shaping excitatory synaptic input, less is known about the structural rearrangement of inhibitory synapses following learning. In this study, we co-expressed the structural marker tdTomato and a mEmerald-tagged intrabody against gephyrin to visualize inhibitory synapses in layer 2/3 cortical neurons of wild-type CD1 mice. We found that a 1-day accelerated rotarod paradigm induced robust motor learning in male and female adult CD1 mice. Histological analyses revealed a significant increase in the surface area of gephyrin puncta in neurons within the motor cortex but not in the somatosensory cortex upon motor learning. Furthermore, this learning-induced reorganization of inhibitory synapses only occurred in dendritic shafts and not in the spines. These data suggest that learning induces experience-dependent remodelling of existing inhibitory synapses to fine-tune intrinsic plasticity and input-specific modulation of excitatory connections in the motor cortex.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 11","pages":"240109"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning-induced remodelling of inhibitory synapses in the motor cortex.\",\"authors\":\"Nishita Bhembre, Annalisa Paolino, Sooraj S Das, Sumasri Guntupalli, Laura R Fenlon, Victor Anggono\",\"doi\":\"10.1098/rsob.240109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robust structural and functional plasticity occurs at excitatory synapses in the motor cortex in response to learning. It is well established that local spinogenesis and the subsequent maintenance of newly formed spines are crucial for motor learning. However, despite local synaptic inhibition being essential for shaping excitatory synaptic input, less is known about the structural rearrangement of inhibitory synapses following learning. In this study, we co-expressed the structural marker tdTomato and a mEmerald-tagged intrabody against gephyrin to visualize inhibitory synapses in layer 2/3 cortical neurons of wild-type CD1 mice. We found that a 1-day accelerated rotarod paradigm induced robust motor learning in male and female adult CD1 mice. Histological analyses revealed a significant increase in the surface area of gephyrin puncta in neurons within the motor cortex but not in the somatosensory cortex upon motor learning. Furthermore, this learning-induced reorganization of inhibitory synapses only occurred in dendritic shafts and not in the spines. These data suggest that learning induces experience-dependent remodelling of existing inhibitory synapses to fine-tune intrinsic plasticity and input-specific modulation of excitatory connections in the motor cortex.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"14 11\",\"pages\":\"240109\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240109\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

运动皮层中的兴奋性突触在学习过程中会产生强大的结构和功能可塑性。局部棘突生成和随后新形成棘突的维持对运动学习至关重要,这一点已得到公认。然而,尽管局部突触抑制对形成兴奋性突触输入至关重要,但人们对学习后抑制性突触的结构重排却知之甚少。在这项研究中,我们共同表达了结构标记物tdTomato和mEmerald标记的抗ephyrin内体,以观察野生型CD1小鼠2/3层皮层神经元的抑制性突触。我们发现,为期1天的加速转体范式能诱导雄性和雌性成年CD1小鼠进行强健的运动学习。组织学分析表明,在运动学习过程中,运动皮层神经元的ephyrin点表面积显著增加,而体感皮层神经元的ephyrin点表面积则没有增加。此外,这种学习诱导的抑制性突触重组只发生在树突轴而不是棘突上。这些数据表明,学习会诱导对现有抑制性突触进行经验依赖性重塑,以微调运动皮层中兴奋性连接的内在可塑性和输入特异性调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-induced remodelling of inhibitory synapses in the motor cortex.

Robust structural and functional plasticity occurs at excitatory synapses in the motor cortex in response to learning. It is well established that local spinogenesis and the subsequent maintenance of newly formed spines are crucial for motor learning. However, despite local synaptic inhibition being essential for shaping excitatory synaptic input, less is known about the structural rearrangement of inhibitory synapses following learning. In this study, we co-expressed the structural marker tdTomato and a mEmerald-tagged intrabody against gephyrin to visualize inhibitory synapses in layer 2/3 cortical neurons of wild-type CD1 mice. We found that a 1-day accelerated rotarod paradigm induced robust motor learning in male and female adult CD1 mice. Histological analyses revealed a significant increase in the surface area of gephyrin puncta in neurons within the motor cortex but not in the somatosensory cortex upon motor learning. Furthermore, this learning-induced reorganization of inhibitory synapses only occurred in dendritic shafts and not in the spines. These data suggest that learning induces experience-dependent remodelling of existing inhibitory synapses to fine-tune intrinsic plasticity and input-specific modulation of excitatory connections in the motor cortex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信