水性环氧树脂/聚氨酯复合材料改性乳化沥青的流变特性与改性机理

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-11-01 DOI:10.3390/ma17215361
Maorong Li, Zhaoyi He, Jiahao Yu, Le Yu, Zuzhen Shen, Lin Kong
{"title":"水性环氧树脂/聚氨酯复合材料改性乳化沥青的流变特性与改性机理","authors":"Maorong Li, Zhaoyi He, Jiahao Yu, Le Yu, Zuzhen Shen, Lin Kong","doi":"10.3390/ma17215361","DOIUrl":null,"url":null,"abstract":"<p><p>In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with WPU (waterborne polyurethane), WER, and DMP-30 (accelerator). Firstly, the performance changes of modified emulsified asphalt at different single-factor dosages were explored through conventional performance tests and assessments of its adhesion, tensile properties, and curing time. Secondly, based on a response surface methodology test design, the material composition of the composite-modified emulsified asphalt was optimized, and its rheological properties were analyzed by a DSR test and a force-ductility test. Finally, the modification mechanism was explored by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that WER can improve the adhesion strength of modified emulsified asphalt and greatly reduce elongation at break. WPU can effectively improve the elongation at break of composite-modified emulsified asphalt, but it has a negative impact on adhesion strength. DMP-30 mainly affects the curing time of modified emulsified asphalt; EPD (composite modification) can effectively improve the high-temperature rutting resistance of matrix-emulsified asphalt, and its low-temperature performance is significantly improved compared with WER-modified emulsified asphalt. The EPD modification process mainly consists of physical blending. In the case of increasing the curing rate, it is recommended that the contents of WER and WPU be lower than 10% and 6%, respectively, to achieve excellent comprehensive performance of the composite modification.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rheological Properties and Modification Mechanism of Emulsified Asphalt Modified with Waterborne Epoxy/Polyurethan Composite.\",\"authors\":\"Maorong Li, Zhaoyi He, Jiahao Yu, Le Yu, Zuzhen Shen, Lin Kong\",\"doi\":\"10.3390/ma17215361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with WPU (waterborne polyurethane), WER, and DMP-30 (accelerator). Firstly, the performance changes of modified emulsified asphalt at different single-factor dosages were explored through conventional performance tests and assessments of its adhesion, tensile properties, and curing time. Secondly, based on a response surface methodology test design, the material composition of the composite-modified emulsified asphalt was optimized, and its rheological properties were analyzed by a DSR test and a force-ductility test. Finally, the modification mechanism was explored by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that WER can improve the adhesion strength of modified emulsified asphalt and greatly reduce elongation at break. WPU can effectively improve the elongation at break of composite-modified emulsified asphalt, but it has a negative impact on adhesion strength. DMP-30 mainly affects the curing time of modified emulsified asphalt; EPD (composite modification) can effectively improve the high-temperature rutting resistance of matrix-emulsified asphalt, and its low-temperature performance is significantly improved compared with WER-modified emulsified asphalt. The EPD modification process mainly consists of physical blending. In the case of increasing the curing rate, it is recommended that the contents of WER and WPU be lower than 10% and 6%, respectively, to achieve excellent comprehensive performance of the composite modification.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215361\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215361","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在旨在改善 WER(水性环氧树脂)改性乳化沥青脆性的研究中,普遍遇到的问题是这类沥青的低温性能不足,固化时间长导致早期强度低。使用 WPU(水性聚氨酯)、WER 和 DMP-30(促进剂)对基质乳化沥青进行改性。首先,通过常规性能测试以及对其粘附性、拉伸性能和固化时间的评估,探讨了不同单因素用量下改性乳化沥青的性能变化。其次,基于响应面法试验设计,优化了复合改性乳化沥青的材料组成,并通过 DSR 试验和力-电导试验分析了其流变特性。最后,通过扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)对改性机理进行了探讨。结果表明,WER 可以提高改性乳化沥青的粘附强度,并大大降低断裂伸长率。WPU 能有效提高复合改性乳化沥青的断裂伸长率,但对粘附强度有负面影响。DMP-30主要影响改性乳化沥青的固化时间;EPD(复合改性)能有效提高基质乳化沥青的高温抗车辙性能,与WER改性乳化沥青相比,其低温性能明显改善。EPD 改性工艺主要包括物理混合。在提高固化率的情况下,建议 WER 和 WPU 的含量分别低于 10%和 6%,以实现优异的复合改性综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological Properties and Modification Mechanism of Emulsified Asphalt Modified with Waterborne Epoxy/Polyurethan Composite.

In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with WPU (waterborne polyurethane), WER, and DMP-30 (accelerator). Firstly, the performance changes of modified emulsified asphalt at different single-factor dosages were explored through conventional performance tests and assessments of its adhesion, tensile properties, and curing time. Secondly, based on a response surface methodology test design, the material composition of the composite-modified emulsified asphalt was optimized, and its rheological properties were analyzed by a DSR test and a force-ductility test. Finally, the modification mechanism was explored by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that WER can improve the adhesion strength of modified emulsified asphalt and greatly reduce elongation at break. WPU can effectively improve the elongation at break of composite-modified emulsified asphalt, but it has a negative impact on adhesion strength. DMP-30 mainly affects the curing time of modified emulsified asphalt; EPD (composite modification) can effectively improve the high-temperature rutting resistance of matrix-emulsified asphalt, and its low-temperature performance is significantly improved compared with WER-modified emulsified asphalt. The EPD modification process mainly consists of physical blending. In the case of increasing the curing rate, it is recommended that the contents of WER and WPU be lower than 10% and 6%, respectively, to achieve excellent comprehensive performance of the composite modification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信