Eusebiu Ilarian Ionete, Artur Visse, Radu Dorin Andrei, Mirela Irina Petreanu, Stefan Ionut Spiridon, Roxana Elena Ionete
{"title":"基于氧化铝和环烯烃共聚物的复合材料的电气和绝缘特性。","authors":"Eusebiu Ilarian Ionete, Artur Visse, Radu Dorin Andrei, Mirela Irina Petreanu, Stefan Ionut Spiridon, Roxana Elena Ionete","doi":"10.3390/ma17215349","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the performance of polymer dielectrics at different temperatures is becoming increasingly important due to the rapid development of electric cars, electromagnetic devices, and new energy production solutions. Cyclic olefin copolymers (COCs) are an attractive material due to their low water absorption, good electrical insulation, long-term stability of surface treatments, and resistance to a wide range of acids and solvents. This work focused on the dielectric and electrical properties of cyclic olefin copolymer (COC)/Al<sub>2</sub>O<sub>3</sub> composites over a wide range of temperature and frequency domains, from room temperature to cryogenic temperatures (around 125 K). Permittivity, electrical conductivity, and electrical modulus are given consideration. A composite of up to 50% Al<sub>2</sub>O<sub>3</sub> mixed with COC was prepared via a conventional melt-blending method. The final samples were formed in sheets and processed using injection and extrusion moldings. It was found that formulations with Al<sub>2</sub>O<sub>3</sub> concentrations ranging from 10 to 50% resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer-processing machinery. Our data show that COC/alumina composites present substantial potential as materials for high-frequency applications, even at the regime of cryogenic temperatures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547529/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrical and Dielectrical Properties of Composites Based on Alumina and Cyclic Olefin Copolymers.\",\"authors\":\"Eusebiu Ilarian Ionete, Artur Visse, Radu Dorin Andrei, Mirela Irina Petreanu, Stefan Ionut Spiridon, Roxana Elena Ionete\",\"doi\":\"10.3390/ma17215349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the performance of polymer dielectrics at different temperatures is becoming increasingly important due to the rapid development of electric cars, electromagnetic devices, and new energy production solutions. Cyclic olefin copolymers (COCs) are an attractive material due to their low water absorption, good electrical insulation, long-term stability of surface treatments, and resistance to a wide range of acids and solvents. This work focused on the dielectric and electrical properties of cyclic olefin copolymer (COC)/Al<sub>2</sub>O<sub>3</sub> composites over a wide range of temperature and frequency domains, from room temperature to cryogenic temperatures (around 125 K). Permittivity, electrical conductivity, and electrical modulus are given consideration. A composite of up to 50% Al<sub>2</sub>O<sub>3</sub> mixed with COC was prepared via a conventional melt-blending method. The final samples were formed in sheets and processed using injection and extrusion moldings. It was found that formulations with Al<sub>2</sub>O<sub>3</sub> concentrations ranging from 10 to 50% resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer-processing machinery. Our data show that COC/alumina composites present substantial potential as materials for high-frequency applications, even at the regime of cryogenic temperatures.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215349\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215349","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrical and Dielectrical Properties of Composites Based on Alumina and Cyclic Olefin Copolymers.
Understanding the performance of polymer dielectrics at different temperatures is becoming increasingly important due to the rapid development of electric cars, electromagnetic devices, and new energy production solutions. Cyclic olefin copolymers (COCs) are an attractive material due to their low water absorption, good electrical insulation, long-term stability of surface treatments, and resistance to a wide range of acids and solvents. This work focused on the dielectric and electrical properties of cyclic olefin copolymer (COC)/Al2O3 composites over a wide range of temperature and frequency domains, from room temperature to cryogenic temperatures (around 125 K). Permittivity, electrical conductivity, and electrical modulus are given consideration. A composite of up to 50% Al2O3 mixed with COC was prepared via a conventional melt-blending method. The final samples were formed in sheets and processed using injection and extrusion moldings. It was found that formulations with Al2O3 concentrations ranging from 10 to 50% resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer-processing machinery. Our data show that COC/alumina composites present substantial potential as materials for high-frequency applications, even at the regime of cryogenic temperatures.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.