{"title":"纳米材料中的界面声子传输:数值方法和调制策略。","authors":"Yuan Yao, Hao Chen, Zhong-Ke Ding, Wei-Hua Xiao, Nannan Luo, Jiang Zeng, Li-Ming Tang, Ke-Qiu Chen","doi":"10.1088/1361-648X/ad9210","DOIUrl":null,"url":null,"abstract":"<p><p>The thermal properties of interfaces in nanomaterials are critical for various technological applications, including thermal management in electronic and photonic devices, thermoelectric conversion and thermal insulation. Recent advancements in numerical simulation tools (the non-equilibrium Green's approach, the Boltzmann transport equation and the Monte Carlo method, molecular dynamics simulations) have significantly enhanced our understanding of phonon transport and scattering processes in nanomaterials. These advances have led to the discovery of new thermal interfacial materials and enabled precise modulation of phonon thermal conductance to achieve desired thermal performance. This review summarizes recent research progress in interface thermal transport, focusing on intriguing heat phenomena such as finite size effect and phonon coherent property. Additionally, it discusses strategies for modulating thermal conductance through disorder and roughness. Finally, the review proposes the opportunities and challenges associated with modulating interface thermal transport.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface phonon transport in nanomaterials: numerical methods and modulation strategies.\",\"authors\":\"Yuan Yao, Hao Chen, Zhong-Ke Ding, Wei-Hua Xiao, Nannan Luo, Jiang Zeng, Li-Ming Tang, Ke-Qiu Chen\",\"doi\":\"10.1088/1361-648X/ad9210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermal properties of interfaces in nanomaterials are critical for various technological applications, including thermal management in electronic and photonic devices, thermoelectric conversion and thermal insulation. Recent advancements in numerical simulation tools (the non-equilibrium Green's approach, the Boltzmann transport equation and the Monte Carlo method, molecular dynamics simulations) have significantly enhanced our understanding of phonon transport and scattering processes in nanomaterials. These advances have led to the discovery of new thermal interfacial materials and enabled precise modulation of phonon thermal conductance to achieve desired thermal performance. This review summarizes recent research progress in interface thermal transport, focusing on intriguing heat phenomena such as finite size effect and phonon coherent property. Additionally, it discusses strategies for modulating thermal conductance through disorder and roughness. Finally, the review proposes the opportunities and challenges associated with modulating interface thermal transport.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad9210\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9210","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Interface phonon transport in nanomaterials: numerical methods and modulation strategies.
The thermal properties of interfaces in nanomaterials are critical for various technological applications, including thermal management in electronic and photonic devices, thermoelectric conversion and thermal insulation. Recent advancements in numerical simulation tools (the non-equilibrium Green's approach, the Boltzmann transport equation and the Monte Carlo method, molecular dynamics simulations) have significantly enhanced our understanding of phonon transport and scattering processes in nanomaterials. These advances have led to the discovery of new thermal interfacial materials and enabled precise modulation of phonon thermal conductance to achieve desired thermal performance. This review summarizes recent research progress in interface thermal transport, focusing on intriguing heat phenomena such as finite size effect and phonon coherent property. Additionally, it discusses strategies for modulating thermal conductance through disorder and roughness. Finally, the review proposes the opportunities and challenges associated with modulating interface thermal transport.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.