Nehal M Elsherbiny, Mohamed S Abdel-Maksoud, Kousalya Prabahar, Zuhair M Mohammedsaleh, Omnia A M Badr, Arigue A Dessouky, Hoda A Salem, Omnia A Refadah, Ayman Samir Farid, Ashraf A Shamaa, Nesrine Ebrahim
{"title":"间充质干细胞衍生的EV可防止化疗引起的卵巢毒性:PI3K/AKT/mTOR轴的作用","authors":"Nehal M Elsherbiny, Mohamed S Abdel-Maksoud, Kousalya Prabahar, Zuhair M Mohammedsaleh, Omnia A M Badr, Arigue A Dessouky, Hoda A Salem, Omnia A Refadah, Ayman Samir Farid, Ashraf A Shamaa, Nesrine Ebrahim","doi":"10.1186/s13048-024-01545-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy detrimentally impacts fertility via depletion of follicular reserves in the ovaries leading to ovarian failure (OF) and development of estrogen deficiency-related complications. The currently proposed options to preserve fertility such as Oocyte or ovarian cortex cryopreservation are faced with many technical obstacles that limit their effective implementation. Therefore, developing new modalities to protect ovarian function remains a pending target. Exosomes are nano-sized cell-derived extracellular vesicles (EVs) with documented efficacy in the field of regenerative medicine. The current study sought to determine the potential beneficial effects of mesenchymal stem cells (MSCs)-derived EVs in experimentally induced OF. Female albino rats were randomly allocated to four groups: control, OF group, OF + MSCs-EVs group, OF + Rapamycin (mTOR inhibitor) group, and OF + Quercetin (PI3K/AKT inhibitor) group. Follicular development was assessed via histopathological and immunohistochemical examination, and ovarian function was evaluated by hormonal assay. PI3K/Akt/mTOR signaling pathway as a key modulator of ovarian follicular activation was also assessed. MSCs-EVs administration to OF rats resulted in restored serum hormonal levels, preserved primordial follicles and oocytes, suppressed ovarian PI3K/AKT axis and downstream effectors (mTOR and FOXO3), modulated miRNA that target this axis, decreased expression of ovarian apoptotic markers (BAX, BCl2) and increased expression of proliferation marker Ki67. The present study validated the effectiveness of MSCs-EVs therapy in preventing ovarian insufficiency induced by chemotherapy. Concomitant MSCs-EVs treatment during chemotherapy could significantly preserve ovarian function and fertility by suppressing the PI3K/Akt axis, preventing follicular overactivation, maintaining normal ovarian cellular proliferation, and inhibiting granulosa cell apoptosis.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"17 1","pages":"222"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552115/pdf/","citationCount":"0","resultStr":"{\"title\":\"MSCs-derived EVs protect against chemotherapy-induced ovarian toxicity: role of PI3K/AKT/mTOR axis.\",\"authors\":\"Nehal M Elsherbiny, Mohamed S Abdel-Maksoud, Kousalya Prabahar, Zuhair M Mohammedsaleh, Omnia A M Badr, Arigue A Dessouky, Hoda A Salem, Omnia A Refadah, Ayman Samir Farid, Ashraf A Shamaa, Nesrine Ebrahim\",\"doi\":\"10.1186/s13048-024-01545-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy detrimentally impacts fertility via depletion of follicular reserves in the ovaries leading to ovarian failure (OF) and development of estrogen deficiency-related complications. The currently proposed options to preserve fertility such as Oocyte or ovarian cortex cryopreservation are faced with many technical obstacles that limit their effective implementation. Therefore, developing new modalities to protect ovarian function remains a pending target. Exosomes are nano-sized cell-derived extracellular vesicles (EVs) with documented efficacy in the field of regenerative medicine. The current study sought to determine the potential beneficial effects of mesenchymal stem cells (MSCs)-derived EVs in experimentally induced OF. Female albino rats were randomly allocated to four groups: control, OF group, OF + MSCs-EVs group, OF + Rapamycin (mTOR inhibitor) group, and OF + Quercetin (PI3K/AKT inhibitor) group. Follicular development was assessed via histopathological and immunohistochemical examination, and ovarian function was evaluated by hormonal assay. PI3K/Akt/mTOR signaling pathway as a key modulator of ovarian follicular activation was also assessed. MSCs-EVs administration to OF rats resulted in restored serum hormonal levels, preserved primordial follicles and oocytes, suppressed ovarian PI3K/AKT axis and downstream effectors (mTOR and FOXO3), modulated miRNA that target this axis, decreased expression of ovarian apoptotic markers (BAX, BCl2) and increased expression of proliferation marker Ki67. The present study validated the effectiveness of MSCs-EVs therapy in preventing ovarian insufficiency induced by chemotherapy. Concomitant MSCs-EVs treatment during chemotherapy could significantly preserve ovarian function and fertility by suppressing the PI3K/Akt axis, preventing follicular overactivation, maintaining normal ovarian cellular proliferation, and inhibiting granulosa cell apoptosis.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":\"17 1\",\"pages\":\"222\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01545-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01545-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
MSCs-derived EVs protect against chemotherapy-induced ovarian toxicity: role of PI3K/AKT/mTOR axis.
Chemotherapy detrimentally impacts fertility via depletion of follicular reserves in the ovaries leading to ovarian failure (OF) and development of estrogen deficiency-related complications. The currently proposed options to preserve fertility such as Oocyte or ovarian cortex cryopreservation are faced with many technical obstacles that limit their effective implementation. Therefore, developing new modalities to protect ovarian function remains a pending target. Exosomes are nano-sized cell-derived extracellular vesicles (EVs) with documented efficacy in the field of regenerative medicine. The current study sought to determine the potential beneficial effects of mesenchymal stem cells (MSCs)-derived EVs in experimentally induced OF. Female albino rats were randomly allocated to four groups: control, OF group, OF + MSCs-EVs group, OF + Rapamycin (mTOR inhibitor) group, and OF + Quercetin (PI3K/AKT inhibitor) group. Follicular development was assessed via histopathological and immunohistochemical examination, and ovarian function was evaluated by hormonal assay. PI3K/Akt/mTOR signaling pathway as a key modulator of ovarian follicular activation was also assessed. MSCs-EVs administration to OF rats resulted in restored serum hormonal levels, preserved primordial follicles and oocytes, suppressed ovarian PI3K/AKT axis and downstream effectors (mTOR and FOXO3), modulated miRNA that target this axis, decreased expression of ovarian apoptotic markers (BAX, BCl2) and increased expression of proliferation marker Ki67. The present study validated the effectiveness of MSCs-EVs therapy in preventing ovarian insufficiency induced by chemotherapy. Concomitant MSCs-EVs treatment during chemotherapy could significantly preserve ovarian function and fertility by suppressing the PI3K/Akt axis, preventing follicular overactivation, maintaining normal ovarian cellular proliferation, and inhibiting granulosa cell apoptosis.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.