{"title":"通过溶液混合法合成的聚苯胺-石墨烯纳米复合材料的电子特性","authors":"Soumyasuravi Thakur, Neeraj Rathee, Nirat Ray","doi":"10.1088/1361-648X/ad92ec","DOIUrl":null,"url":null,"abstract":"<p><p>A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic properties of polyaniline-graphene nanocomposites synthesized via solution mixing method.\",\"authors\":\"Soumyasuravi Thakur, Neeraj Rathee, Nirat Ray\",\"doi\":\"10.1088/1361-648X/ad92ec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad92ec\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad92ec","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Electronic properties of polyaniline-graphene nanocomposites synthesized via solution mixing method.
A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.