鸦胆子甙通过调节 HepG2 细胞的糖元生成和糖原合成改善胰岛素抗性

IF 1.7 3区 农林科学 Q4 CHEMISTRY, MEDICINAL
Seonghwa Hong, Huijin Heo, Hyun-Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee
{"title":"鸦胆子甙通过调节 HepG2 细胞的糖元生成和糖原合成改善胰岛素抗性","authors":"Seonghwa Hong, Huijin Heo, Hyun-Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee","doi":"10.1089/jmf.2024.k.0199","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a multifaceted metabolic condition, mainly defined by elevated blood glucose levels. A feature of type 2 DM includes insulin resistance (IR), which involves impairments within the insulin signaling pathways. Avenanthramides (AVNs) are phenolic alkaloids found in <i>Avena sativa</i> L. The major AVNs are AVN A, AVN B, and AVN C. They have been reported to offer benefits in preventing inflammation, cancer, and cardiovascular diseases. However, the effects of AVNs on the liver glucose metabolism pathways remain unknown. This study examined the effects and underlying mechanisms through which AVNs alleviate IR induced by free fatty acid (FFA) in HepG2 cells. The results indicated that FFA treatment significantly decreased glucose consumption by 34.54% compared to the control. However, treatments with AVN A, B, and C at 100 μM increased glucose uptake by 57.93%, 58.28%, and 53.10%, respectively, compared to FFA treatment alone. This effect occurs through the increased expression of glucose transporter 4. Furthermore, AVNs significantly enhanced the glycogen content. AVNs induced increased phosphorylation of insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). AVNs treatment decreased the levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in HepG2 cells. This effect was attributed to AMP-activated protein kinase activation and inhibition of forkhead box protein O1. Collectively, these results suggest that AVNs regulate glucose metabolism by activating the IRS-1/PI3K/Akt pathway, which is related to glycogen synthesis, and by inhibiting key molecules that promote gluconeogenesis.</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avenanthramides Ameliorate Insulin Resistance by Modulating Gluconeogenesis and Glycogen Synthesis in HepG2 Cells.\",\"authors\":\"Seonghwa Hong, Huijin Heo, Hyun-Joo Kim, Heon Sang Jeong, Hana Lee, Junsoo Lee\",\"doi\":\"10.1089/jmf.2024.k.0199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a multifaceted metabolic condition, mainly defined by elevated blood glucose levels. A feature of type 2 DM includes insulin resistance (IR), which involves impairments within the insulin signaling pathways. Avenanthramides (AVNs) are phenolic alkaloids found in <i>Avena sativa</i> L. The major AVNs are AVN A, AVN B, and AVN C. They have been reported to offer benefits in preventing inflammation, cancer, and cardiovascular diseases. However, the effects of AVNs on the liver glucose metabolism pathways remain unknown. This study examined the effects and underlying mechanisms through which AVNs alleviate IR induced by free fatty acid (FFA) in HepG2 cells. The results indicated that FFA treatment significantly decreased glucose consumption by 34.54% compared to the control. However, treatments with AVN A, B, and C at 100 μM increased glucose uptake by 57.93%, 58.28%, and 53.10%, respectively, compared to FFA treatment alone. This effect occurs through the increased expression of glucose transporter 4. Furthermore, AVNs significantly enhanced the glycogen content. AVNs induced increased phosphorylation of insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). AVNs treatment decreased the levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in HepG2 cells. This effect was attributed to AMP-activated protein kinase activation and inhibition of forkhead box protein O1. Collectively, these results suggest that AVNs regulate glucose metabolism by activating the IRS-1/PI3K/Akt pathway, which is related to glycogen synthesis, and by inhibiting key molecules that promote gluconeogenesis.</p>\",\"PeriodicalId\":16440,\"journal\":{\"name\":\"Journal of medicinal food\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medicinal food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1089/jmf.2024.k.0199\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medicinal food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/jmf.2024.k.0199","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)是一种多方面的代谢疾病,主要表现为血糖水平升高。2 型糖尿病的一个特征是胰岛素抵抗(IR),这涉及胰岛素信号通路的损伤。据报道,它们对预防炎症、癌症和心血管疾病有好处。然而,AVNs 对肝脏葡萄糖代谢途径的影响仍然未知。本研究探讨了 AVNs 在 HepG2 细胞中缓解游离脂肪酸(FFA)诱导的 IR 的作用和内在机制。结果表明,与对照组相比,游离脂肪酸处理可使葡萄糖消耗量明显减少 34.54%。然而,与单独使用 FFA 处理相比,100 μM 的 AVN A、B 和 C 处理可使葡萄糖摄取量分别增加 57.93%、58.28% 和 53.10%。这种效应是通过葡萄糖转运体 4 的表达增加而产生的。此外,AVNs 还能明显提高糖原含量。AVNs 诱导胰岛素受体底物-1(IRS-1)、磷脂酰肌醇-3-激酶(PI3K)和蛋白激酶 B(Akt)的磷酸化增加。AVNs 可降低 HepG2 细胞中磷酸烯醇丙酮酸羧激酶和葡萄糖-6-磷酸酶的水平。这种效应归因于 AMP 激活蛋白激酶的激活和叉头盒蛋白 O1 的抑制。总之,这些结果表明,反转录病毒通过激活与糖原合成有关的 IRS-1/PI3K/Akt 通路和抑制促进葡萄糖生成的关键分子来调节葡萄糖代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avenanthramides Ameliorate Insulin Resistance by Modulating Gluconeogenesis and Glycogen Synthesis in HepG2 Cells.

Diabetes mellitus (DM) is a multifaceted metabolic condition, mainly defined by elevated blood glucose levels. A feature of type 2 DM includes insulin resistance (IR), which involves impairments within the insulin signaling pathways. Avenanthramides (AVNs) are phenolic alkaloids found in Avena sativa L. The major AVNs are AVN A, AVN B, and AVN C. They have been reported to offer benefits in preventing inflammation, cancer, and cardiovascular diseases. However, the effects of AVNs on the liver glucose metabolism pathways remain unknown. This study examined the effects and underlying mechanisms through which AVNs alleviate IR induced by free fatty acid (FFA) in HepG2 cells. The results indicated that FFA treatment significantly decreased glucose consumption by 34.54% compared to the control. However, treatments with AVN A, B, and C at 100 μM increased glucose uptake by 57.93%, 58.28%, and 53.10%, respectively, compared to FFA treatment alone. This effect occurs through the increased expression of glucose transporter 4. Furthermore, AVNs significantly enhanced the glycogen content. AVNs induced increased phosphorylation of insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). AVNs treatment decreased the levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in HepG2 cells. This effect was attributed to AMP-activated protein kinase activation and inhibition of forkhead box protein O1. Collectively, these results suggest that AVNs regulate glucose metabolism by activating the IRS-1/PI3K/Akt pathway, which is related to glycogen synthesis, and by inhibiting key molecules that promote gluconeogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of medicinal food
Journal of medicinal food 医学-食品科技
CiteScore
4.50
自引率
0.00%
发文量
154
审稿时长
4.5 months
期刊介绍: Journal of Medicinal Food is the only peer-reviewed journal focusing exclusively on the medicinal value and biomedical effects of food materials. International in scope, the Journal advances the knowledge of the development of new food products and dietary supplements targeted at promoting health and the prevention and treatment of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信